簡易檢索 / 詳目顯示

研究生: 劉俊佑
Chun-Yu Liu
論文名稱: 數位化無橋圖騰柱功率因數修正器之研製
Design and Implementation of a Digital Bridgeless Totem-Pole Power Factor Corrector
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
劉添華
Tian-Hua Liu
王順忠
Shun-Chung Wang
呂榮基
RONG-CENG LEOU
邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 131
中文關鍵詞: 無橋式功率因數修正器碳化矽電晶體數位控制連續導 通模式控制
外文關鍵詞: Bridgeless power factor corrector, Silicon Carbide Transistor, Digital control, Continuous conduction mode control
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要實現連續導通模式之無橋圖騰柱功率因數修正器,其
    為一具有輸入交流電壓 110V 和 220V、輸出直流電壓 400V,輸出
    600W 的高效率電源轉換器。本文針對功率因數修正器的動作原理、
    功率元件設計、回授電路設計、控制迴路訊號分析、數位控制迴路的
    小訊號分析、補償器設計與分析做詳細的探討,並且以數學理論為基
    礎使用 Matlab 和 PSIM 對設計的數值進行模擬,進而獲得期望的結
    果。本文使用無橋圖騰柱的架構且使用碳化矽金屬氧化物半導體場效
    電晶體來達到高效率的目標,相較於傳統架構的功率因數修正器,其
    導通損耗較小。此外,本論文使用數位控制實現連續導通模式操作,
    並提出兩種方案來因應市電頻率變化以及回授電路元件值之熱漂移
    問題,進而降低線電流畸變的影響,這些方法分別為自適應三角近似
    法與電流偏移自動校準技術。由實驗結果可知使用本文所提出的方法,
    確實在元件值受溫度漂移和市電頻率變化時線電流總諧波失真量有
    顯著的改善。此外實驗結果顯示所研製的電路在半載以上操作範圍功
    率因數高於 0.98。


    This dissertation mainly implements the bridgeless totem-pole power
    factor corrector (PFC) operated in continuous conduction mode (CCM). It
    is a high-efficiency power converter with an input AC voltage of 110V and
    220V, an output DC voltage of 400V, and an output of 600W. This
    dissertation focuses on the operating principle of the power factor corrector,
    component design, feedback circuit design, digital control loop smallsignal analysis, and compensator design and analysis. Furthermore, Matlab
    and PSIM are used to conduct simulation on the designed parameter based
    on operating principles. This dissertation realizes the bridgeless totem-pole
    power factor corrector and utilizes SiC MOSFET to achieve high efficiency.
    Compared with the conventional PFC, the chosen structure has a lower
    conduction loss. Additionally, this dissertation employs digital control to
    realize CCM control. Two methods, including adaptive trigonometric
    approximation and bias current automated calibration technology are
    proposed to treat the changes in mains frequency and the thermal drift
    problem of feedback circuit components, thereby reducing the impact of
    current distortion. As the experimental results reveal, the proposed method
    can significantly improve the line current harmonic distortion when the
    component temperature drifts and the mains frequency changes. Moreover,
    the experimental results show that the implemented bridgeless totem-pole
    circuit can achieve a power factor higher than 0.98 in the operating range
    above half load.

    摘要 ......................................................................................................... I Abstract .................................................................................................. II 誌謝 ....................................................................................................... III 目錄 ....................................................................................................... IV 圖目錄 ................................................................................................. VII 表目錄 ................................................................................................. XII 第 1 章 緒論 ........................................................................................ 1 1.1 研究背景與動機 ..................................................................... 1 1.2 文獻探討 ................................................................................ 2 1.3 論文大綱 ................................................................................ 4 第 2 章 功率因數修正器之原理 ......................................................... 6 2.1 功率因數與諧波失真之定義 ................................................. 6 2.2 功率因數修正器的種類 ......................................................... 9 2.2.1 被動式功率因數修正器 ............................................... 9 2.2.2 主動式功率因數修正器 ............................................. 10 2.3 主動式功率因數修正器之控制模式介紹 ............................ 11 2.3.1 峰值電流控制法(Peak Current Control) ..................... 12 2.3.2 磁滯電流控制法(Hysteresis Current Control) ............ 14 2.3.3 平均電流控制法(Average Current Control) ............... 15 第 3 章 無橋圖騰柱功率因數修正器之分析.................................... 17 3.1 電路架構以及動作原理 ....................................................... 17 3.2 元件設計考量....................................................................... 22 3.2.1 磁性元件設計............................................................. 23 3.2.2 濾波電容設計............................................................. 24 V 3.3 感測電路設計....................................................................... 24 3.3.1 輸出直流電壓回授電路 ............................................. 25 3.3.2 輸入交流電壓回授及鎖相電路 ................................. 25 3.3.3 電感電流回授電路 ..................................................... 27 第 4 章 無橋圖騰柱功率因數修正器控制迴路分析 ........................ 28 4.1 無橋圖騰柱功率因數修正器控制方法 ................................ 28 4.2 電流控制迴路設計 ............................................................... 29 4.2.1 取得函數 Ki: ............................................................... 34 4.2.2 極零點頻率 (fzi和 fpi) 計算: ..................................... 35 4.2.3 直流增益 Gc0_i計算: ................................................... 35 4.3 電壓控制迴路設計 ............................................................... 41 4.3.1 Kv計算: ...................................................................... 46 4.3.2 極零點頻率(fzv和 fpv)計算: ........................................ 46 4.3.3 直流增益 Gc0_v計算: .................................................. 46 4.4 責任週期前饋....................................................................... 50 4.5 Type Ⅱ數位補償器 ............................................................. 53 第 5 章 自適應三角近似法與電流偏移自動校準技術 .................... 55 5.1 自適應頻率調控三角近似法 ............................................... 55 5.1.1 自適應頻率調控 ......................................................... 55 5.1.2 三角近似 .................................................................... 61 5.2 電流訊號偏移自動校準(Sensor offset): ............................... 63 第 6 章 數位控制之設計與實現 ....................................................... 66 6.1 數位電源控制機制 ............................................................... 66 6.2 TMS320F280049 微處理機簡介 .......................................... 66 6.3 主系統控制流程 ................................................................... 70 VI 6.3.1 開機流程 .................................................................... 70 6.3.2 SCI 通訊 ..................................................................... 73 6.3.3 I2C 通訊 ..................................................................... 76 6.4 Ecap 中斷 ............................................................................. 80 6.5 ADC 中斷副程式 ................................................................. 82 6.5.1 AC/DC 控制 ............................................................... 83 6.5.2 控制主程式 ................................................................ 83 6.5.3 自適應三角近似法 ..................................................... 85 6.5.4 電流偏移自動校準技術 ............................................. 85 6.5.5 保護偵測 .................................................................... 86 6.6 LabVIEW 數位示波器 ......................................................... 88 6.7 LCD 顯示器 ......................................................................... 89 第 7 章 實驗結果與討論 ................................................................... 91 7.1 實驗系統設置....................................................................... 91 7.2 實驗結果 .............................................................................. 92 7.3 分析與探討 ........................................................................ 101 第 8 章 結論與未來展望 ................................................................. 105 8.1 結論 .................................................................................... 105 8.2 未來展望 ............................................................................ 105 參考文獻 ............................................................................................. 107

    [1] P. N. Enjeti, and R. Martinez, “A high performance single phase AC to
    DC rectifier with input power factor correction,” IEEE Proc. Applied
    Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [2] R. Srinivasan, and R. Oruganti, “A unity power factor converter using
    half-bridge boost topology,” IEEE Trans. Power Electronics, vol. 13,
    no. 3, pp. 487-499, 1998.
    [3] S. Lai and D. Chen, “Design consideration for power factor correction
    boost converter operating at the boundary of continuous conduction
    mode and discontinuous mode,” IEEE Proc. Applied Power
    Electronics Conference and Exposition, pp. 267-273, May. 1993.
    [4] C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency
    harmonics for continuous-conduction-mode boost power-factor
    correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-
    206, 2001.
    [5] L. H. Dixon, “High power factor pre-regulators for off-line power
    supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [6] Ke Zhu,Matt O'Grady and Jonathan Dodge, “1.5 kW single phase
    CCM totem-pole PFC using 650V SiC cascodes,” IEEE Power
    Electronics Specialists Conference, vol.2, pp 825-829, Jun. 2018.
    [7] Energy Star certified server [online]. Available:
    https://www.energystar.gov/products/data_center_equipment/enterpri
    se_servers
    108
    [8] Wikipedia 80_PLUS [online]. Available:
    https://zh.wikipedia.org/wiki/80_PLUS
    [9] Wikipedia IEC 61000-3-2 [Online].Available:
    https://en.wikipedia.org/wiki/IEC_61000-3-2
    [10]Marvi, Mohammad, and Ali Fotowat-Ahmady. "A fully ZVS critical
    conduction mode boost PFC." IEEE transactions on power electronics
    27.4 (2011): 1958-1965.
    [11]Yao, Kai, et al. "Critical conduction mode boost PFC converter with
    fixed switching frequency control." IEEE Transactions on Power
    Electronics 33.8 (2017): 6845-6857.
    [12]Olayiwola, A., et al. "Digital controller for a boost PFC converter in
    continuous conduction mode." 2006 1st IEEE Conference on
    Industrial Electronics and Applications. IEEE, 2006.
    [13]Roggia, Leandro, et al. "Digital control system applied to a PFC boost
    converter operating in mixed conduction mode." 2009 Brazilian Power
    Electronics Conference. IEEE, 2009.
    [14]Kawaguchi, Yuki, et al. "Feasible evaluation of a full-bridge inverter
    for induction heating cooking appliances with discontinuous current
    mode PFC control." 2008 IEEE Power Electronics Specialists
    Conference. IEEE, 2008.
    [15]Chen, Yie-Tone, Shin-Ming Shiu, and Ruey-Hsun Liang. "Analysis
    and design of a zero-voltage-switching and zero-current-switching
    interleaved boost converter." IEEE Transactions on Power Electronics
    27.1 (2011): 161-173.
    109
    [16]Qiao, Chongming, and Keyue M. Smedley. "A topology survey of
    single-stage power factor corrector with a boost type input-currentshaper." IEEE Transactions on Power Electronics 16.3 (2001): 360-
    368.
    [17]Ghosh, Rajesh, and G. Narayanan. "A simple analog controller for
    single-phase half-bridge rectifier." IEEE transactions on power
    electronics 22.1 (2007): 186-198.
    [18]Cho, Younghoon, and Jih-Sheng Lai. "Digital plug-in repetitive
    controller for single-phase bridgeless PFC converters." IEEE
    Transactions on Power Electronics 28.1 (2012): 165-175.
    [19]Wang, Han, et al. "Theoretic analysis and experimental dissertation of
    a novel bridgeless partial active PFC." 2008 International Conference
    on Electrical Machines and Systems. IEEE, 2008.
    [20]Marcos-Pastor, Adria, et al. "Loss-free resistor-based power factor
    correction using a semi-bridgeless boost rectifier in sliding-mode
    control." IEEE transactions on power electronics 30.10 (2014): 5842-
    5853.
    [21]Musavi, Fariborz, Wilson Eberle, and William G. Dunford. "A phase
    shifted semi-bridgeless boost power factor corrected converter for plug
    in hybrid electric vehicle battery chargers." 2011 Twenty-Sixth Annual
    IEEE Applied Power Electronics Conference and Exposition (APEC).
    IEEE, 2011.
    [22]Zhou, Bo. CCM totem pole bridgeless PFC with ultra fast IGBT. Diss.
    Virginia Tech, 2014.
    110
    [23]Zhu, Ke, et al. "1.5 kW single phase CCM totem-pole PFC using 650V
    SiC cascodes." 2016 IEEE 4th Workshop on Wide Bandgap Power
    Devices and Applications (WiPDA). IEEE, 2016.
    [24]Huang, Qingyun, and Alex Q. Huang. "Review of GaN totem-pole
    bridgeless PFC." CPSS Transactions on Power Electronics and
    Applications 2.3 (2017): 187-196.
    [25]Liu, Zhengyang, et al. "Design of GaN-based MHz totem-pole PFC
    rectifier." IEEE Journal of Emerging and Selected Topics in Power
    Electronics 4.3 (2016): 799-807.
    [26]Liu, Zhengyang, et al. "Digital-based interleaving control for GaNbased MHz CRM totem-pole PFC." IEEE Journal of Emerging and
    Selected Topics in Power Electronics 4.3 (2016): 808-814.
    [27]Kim, Jae-Hyun, Gun-Woo Moon, and Jae-Kuk Kim. "Zero-voltageswitching totem-pole bridgeless boost rectifier with reduced reverserecovery problem for power factor correction." Proceedings of The 7th
    International Power Electronics and Motion Control Conference. Vol.
    2. IEEE, 2012.
    [28]Sun, Xiaowei, Guangzhu Wang, and Xuan Wang. "A unity power
    factor single-stage contactless power transfer system using variable
    frequency-phase shift control." 2017 IEEE Applied Power Electronics
    Conference and Exposition (APEC). IEEE, 2017.
    [29]K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC
    converters,” IEEE Trans. Power Electronics, vol. 5, pp. 293-304, July
    1990.
    111
    [30]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with
    improved input power factor and high power density,” IEEE Trans.
    Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    [31]De Gusseme, Koen, et al. "Digitally controlled boost power-factorcorrection converters operating in both continuous and discontinuous
    conduction mode." IEEE Transactions on Industrial Electronics 52.1
    (2005): 88-97.
    [32]Kim, J. W., S. M. Choi, and K. T. Kim. "Variable on-time control of
    the critical conduction mode boost power factor correction converter
    to improve zero-crossing distortion." 2005 International Conference
    on Power Electronics and Drives Systems. Vol. 2. IEEE, 2005.
    [33]賴日生 ,「電力電子在再生能源和微電網的應用」,IEEE 傑出講
    座講義,2017。
    [34]TDK Ferrite Cores for Power Supply and EMI/RFI Filter, 2007.
    [35]Zhou, Bo. CCM totem pole bridgeless PFC with ultra fast IGBT. Diss.
    Virginia Tech, 2014.
    [36]Venable, H. Dean. "The K factor: A new mathematical tool for stability
    analysis and synthesis." Proc. Powercon. Vol. 10. 1983.
    [37]Van de Sype, David M., et al. "Duty-ratio feedforward for digitally
    controlled boost PFC converters." IEEE Transactions on Industrial
    Electronics 52.1 (2005): 108-115.
    [38]VED,“VDE-AR-N:Power generation system connected to low voltage
    distribution network”, Reference Guide, May 2014.
    [39]Texas Instruments, “TMS320F28004x Piccolo System Control and
    Interrupts,” Reference Guide, May 2019.
    112
    [40]林政廷,倍壓整流無橋交流開關功率因數修正器之研製,國立台
    灣科技大學電子工程系碩士論文,2012 年。
    [41]Z. Ye, A. Aguilar, Y. Bolurian, and B. Daugherty, “GaN FET-Based
    High CCM Totem-Pole Bridgeless PFC,” 2014/2015 Texas
    Instruments Power Supply Design Seminar.
    [42]R. Real, B. Molnar, and N. O. Sokai, “Class E resonant regulate dc/dc
    power converter: analysis of operation and experiment results at 1.5
    MHz,” IEEE Trans. Power Electronics, vol. 1, no. 2, pp. 111-120, Apr.,
    1986.
    [43]K. H. Liu, R. Oruganti, and F. C. Lee, “Quasi-resonant converters
    topologies and characteristics,” IEEE Trans. Power Electronics, vol. 2,
    no. 1, pp. 62-71, Jan. 1987.
    [44]葉孝益 ,「切換式電源供應系統功因控制分析與研究」,國立清華
    大學碩士論文,2003。
    [45]G.Garcia, J. A. Cobos, R. Prieti, P. Alou, and J. Uceda, “Single phase
    power factor correction: a survey,” IEEE Trans. Power Electronics, vol.
    18, no. 3, pp. 749-755, May 2003.
    [46]E. Ismail and R. W. Erickson “A single transistor three phase resonant
    switch for high quality rectification,” in Proc. IEEE Power Electronics
    Specialists Conference, PESC’92, pp. 1341-1351, July 1992.
    [47]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and analysis of a
    hysteretic boost power factor correction circuit,” in Proc. IEEE Power
    Electronics Specialists Conference, PESC’90, pp. 800-807, June 1990.
    [48]R. Redl and B. P. Erisman, “Reducing distortion in peak current
    113
    controlled boost power-factor correctors,” in Proc. IEEE Applied
    Power Electronics Conference and Exposition, APEC ’94, pp. 576-583,
    Feb. 1994.
    [49]K. M. Smedley and S. Cuk, “One-cycle control of switching
    converters,” IEEE Trans. Power Electronics, vol. 10, no. 6, pp. 625-
    633, Nov. 1995.
    [50]L. Dixon, “Average current mode control of switching power supplies,”
    in the Unitrode Applications Handbook(IC 1051), Application note U140, pp. 3-356-3-369, 1997
    [51]R. W. Erickson and D. Maksimovic, Fundamentals of Power
    Electronics, 2nd edition, SCI-TECH Publishing Co., USA, 2001.
    [52]Chen Zhou, “Active Boost Power Factor Analysis and Design,” IBM
    Corporation, April 20, 1989.
    [53]M. F. Schlecht, and B. A. Miwa, “Active Power Factor Correction for
    Switching Power Supplies,” IEEE Transactions on Power Electronics,
    Vol 1. PE-2, No. 4. October 1987.
    [54]C. A. Canesin, and I. Barbi, “Analysis and Design of ConstantFrequency Peak-Current-Controlled High-Power-Factor Boost
    Rectifier with Slope Compensation,” APEC '96., Vol. 2, pp. 807-813,
    March 1996.
    [55]Robert W. Erickson and Dragn Maksimovic, “Fundamentals of Power
    Electronics Second Edition”,2001
    [56]“IEEE 519 Recommended practices and requirements for harmonic
    control in electrical power systems,” IEEE Industry Applications Soc.
    114
    /Power Engineering Soc., 1993.
    [57]“Electromagnetic compatibility (EMC) - Part 3-4: Limits – Limits of
    emission of harmonic current in low-voltage power supply systems for
    equipment with rated current greater than 16A,” IEC 1000-3-4
    Document, 1st Edition, 1998
    [58]J. S. Lai and D. Chen, “Design consideration for power factor
    correction boost converter operating at the boundary of continuous
    conduction mode and discontinuous mode,” IEEE Proc. Applied
    Power Electronics Conference and Exposition, pp. 267-273, May.
    1993.
    [59]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of low frequency
    harmonics for continuous-conduction-mode boost power-factor
    correction,” IEE Proc. Electric Power Applications, vol. 148, pp. 202-
    206, 2001.
    [60]L. H. Dixon, “High power factor pre-regulators for off-line power
    supplies,” Unitrode Application Note, TOPIC6, pp. 1-16.
    [61]L. H. Dixon, “Average current mode control of switching power
    supplies,” Unitrode Application Note, U-140, pp. 356-369.
    [62]K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC
    converters,” IEEE Trans. Power Electronics, vol. 5, pp. 293-304, July
    1990.
    [63]S. Manias, P. D. Ziogas, and G. Olivier, “An AC-to-DC converter with
    improved input power factor and high power density,” IEEE Trans.
    Industrial Electronics, vol. IA-22, no. 6, pp. 1073-1081, 1986.
    115
    [64]P. N. Enjeti, and R. Martinez, “A high performance single phase AC to
    DC rectifier with input power factor correction,” IEEE Proc. Applied
    Power Electronics Conference and Exposition, pp. 190-195, 1993.
    [65]Jun-Young Lee,” Single-Stage AC/DC Converter With Input-Current
    Dead-Zone Control for Wide Input Voltage Ranges,” IEEE Trans.
    Industrial Electronics, vol. 54, no. 2, April 2007

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE