簡易檢索 / 詳目顯示

研究生: 林均翰
Jyun-Han Lin
論文名稱: 噴嘴式電液動泵之實驗研究
Experimental Study of Nozzle Electrohydrodynamic Gas Pump
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 賴豐泉
Feng-Chyuan Lai
郭鴻森
Hong-Sen Kou
陳呈芳
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 150
中文關鍵詞: 電液動泵噴嘴電暈放電
外文關鍵詞: electrohydrodynamic gas pump, nozzle, corona discharge
相關次數: 點閱:227下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同縮口比(DR = 1/2,1/3,1/4)的噴嘴電液動泵的放電特性、流體現象和效能影響,首先經實驗方法進行完整的性能測試和討論分析,並與圓管電液動泵之特性比較。實驗結果顯示,三種縮口比電液動泵分別在不同條件下有較佳表現,噴嘴縮口程度越高能夠產生更高流速,其電流值增加趨勢越平穩,相較之下,縮口程度低在流體速度分佈、軸向吹送距離和體積流率有更好的表現,與等面積之圓管電液動泵比較,因為截面積減少使放電電極尖端較靠近,使得操作電壓和電暈電流皆較低,即代表電能能耗較低。至於噴嘴管道出口處的雷諾數與體積流率關係,因低縮口程度的電液動泵之阻抗低,可以得到較高的雷諾數和體積流率。同時在低電壓下,縮口程度低的電液動泵無法發揮真正的性能,在高電壓下,整體速度分佈和流速皆為最佳;相較之下,縮口程度越高之電液動泵之整體表現,會隨著操作電壓的風速值皆較高且穩定。在效能(輸出的流體體積流率與輸入的消耗電能筆值)表現部分,其不隨電壓增加而上升,且在15kV時三個電液動泵皆有最佳效能,其中以1/2D電液動泵能產生3L/min/W為最佳。在文中所討論的噴嘴電液動泵,所產生的的體積流率皆因為出口面積小,故其性能皆不及圓管電液動泵。以最佳速度分佈、風速值、體積流率和效能的觀點來看,1/2D電液動泵在高電壓下為最佳選擇;若以低能耗、近距離產生最高風速值來看,1/4D在所有電壓下皆為最佳選擇。所以在設計噴嘴式電液動泵以及其最佳表現效能方面,除了考慮不同縮口比的特性之外,未來更可以進一步加入放電電極的數目和電極間距的考量。


    In this study, an electrohydrodynamic (EHD) gas pump fitted within a linear nozzle with different diameter ratios (DR) has been tested for a wide range of applied voltages starting from the corona threshold voltage up to 17 kV for the further improvement in its performance. The EHD gas pump has been critically evaluated by experimental measurements to reveal the relation between pump performance and diameter ratio (DR) as well as the velocity profile at downstream of the pump exit. The result shows that three nozzle configurations have their own characteristics and performs differently under various conditions. A pump with a diameter ratio of 1/2 performs the best in maintaining a velocity profile that can extend the longest distance downstream of the pump while a pump with a diameter ratio of 1/4 can produce the highest velocity with the smallest increase in corona current. It is also worthwhile to note that the maximum velocity, volume flow rate, and performance produced by a pump with a diameter ratio of 1/3 are somewhat between the other two, but the current it required is the highest among all. For the present study, the best performance (in terms of the volume of air delivered by a unit energy input) of 3 L/min/W has been achieved by an EHD gas pump with a diameter ratio of 1/2 operated at 15 kV. Most important of all, it has been found that the flow and electric characteristic are not totally determined by the configuration of nozzle (i.e., the diameter ratio). As such, the design consideration of EHD gas pump fitted within a nozzle should include other parameters (such as the number of electrodes, electrode spacing, and nonlinear surface profile) for its best performance.

    摘要 I Abstract III 致謝 V 目錄 VI 圖索引 XI 表索引 XV 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 9 1.2.1 電液動泵之設計參數、性能與流體特徵 9 1.2.2 電液動之流體現象的實驗與模擬探討 19 1.3 研究動機與方法 22 第二章 電液動理論與背景介紹 25 2.1 噴嘴式電液動泵 25 2.2 電液動力學(EHD)原理 28 2.2.1 基本介紹 28 2.2.2 電暈放電機制 35 2.3 物理系統與統御方程式 42 2.3.1 電暈放電理論公式 44 2.3.2 EHD之驅動力 46 2.3.3 電荷-電場統御方程式 48 2.3.4 流場統御方程式 51 2.4 無因次化參數和電液動泵效能參數 52 第三章 電液動泵之實驗研究測試平台 56 3.1 實驗量測 56 3.1.1 實驗模型之設計與製作 56 3.1.2 實驗平台之建立 58 3.1.3 實驗步驟和流程 61 3.2 實驗設備與儀器 65 第四章 噴嘴式電液動泵之模型性能改變設計 75 4.1 模型設計說明 75 4.1.1 參考電液動泵之模型 75 4.1.2 噴嘴式電液泵 76 4.2 實驗量測方法 80 4.2.1 參考模型量測方法 80 4.2.2 噴嘴式電液動泵量測方法 83 4.3 三種縮口比電液動泵之實驗結果討論 88 4.3.1 縮口比1/2系統 88 4.3.2 縮口比1/3系統 93 4.3.3 縮口比1/4系統 100 4.4 三種縮口比電液動泵之整體比較 104 4.4.1 出口處 104 4.4.2 一倍管道直徑距離 110 4.4.3 兩倍管道直徑距離 114 4.4.4 三倍管道直徑距離 117 4.5 與參考模型之結果比較與小結 122 4.5.1 結果比較 122 4.5.2 小結 129 第五章 結論與建議 133 5.1 結論 133 5.2 建議 137 參考文獻 139

    [1] N. E. Jewell-Larsen, H. Ran, Y. Zhang, M. K. Schwiebert, K. A. H. Tessera, and A. V. Mamishev, "Electrohydrodynamic (EHD) Cooled Laptop," 25th Annual IEEE, Semiconductor Thermal Measurement and Management Symposium, SEMI-THERM 2009. pp. 261-266, 2009.
    [2] M. Robinson, "Movement of Air In the Electric Wind of the Corona Discharge," Research and Development Department Technical Paper, TP60-2, 1961.
    [3] N. Cabeo, Philosophia Magnetica. Cologne, Germany: Francesco Suzzi, Ferrara, 1629.
    [4] T. Cavallo, A Complete Treatise of Electricity, London, U.K.: Edward, 1777.
    [5] J. C. Maxwell, Treatise in Electricity and Magnetism, Oxford, U.K. Oxford Univ. Press, 1873.
    [6] A. P. Chattock, “On the Velocity and Mass of the Ions in the Electric Wind in Air,” Phil. Mag., Vol. 48, No. 294, pp. 401–420, 1899.
    [7] F. W. Peek, Dielectric Phenomena in High Voltage Engineering. New York, NY, McGraw-Hill, 1915.
    [8] T. Musha, “Theoretical Explanation of the Biefeld-Brown Effect,” Electr. Spacecraft J., Vol. 31, No. 1, pp. 21–29, 2000.
    [9] E. Lob, Archiv Der Elektrischen Uebertragung, Baden-Württemberg, Germany: Stuttgart, 1954.
    [10] D. J. Harney, An Aerodynamic Study of the Electric Wind, Pasadena, CA, USA: California Inst. Technol., 1957.
    [11] O. M. Stuetzer, “Magnetohydrodynamics and Electrohydrodynamics,” Phys. Fluids, Vol. 5, No. 5, pp. 534~544, 1962.
    [12] J. Zhang and F. C. Lai, “EHD-Induced Flows in a Square Channel,” Proceedings of 2010 ASME Early Career Technical Conference, 2010.
    [13] H. Kalman and E. Sher, “Enhancement of Heat Transfer by Means of a Corona Wind Created by a Wire Electrode and Confined Wings Assembly,” Applied Thermal Engineering, Vol. 21, Issue 3, pp. 265–282, 2001.
    [14] R. T. Huang, W. J. Sheu and C. C. Wang, “Heat Transfer Enhancement by Needle-Arrayed Electrodes – An EHD Integrated Cooling System,” Energy Conversion and Management, Vol. 50, pp. 1789-1796, 2009.
    [15] 黃政德,”以EHD技術增加LED散熱效率之研究”,國立清華大學動力機械工程學系碩士論文,中華民國94年。
    [16] M. Molki and K. L. Bhamidipati, “Enhancement of Convective Heat Transfer in the Developing Region of Circular Tubes Using Corona Wind,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4301–4314, 2004.
    [17] M. Robinson, “Convective Heat Transfer at the Surface of a Corona Electrode,” International Journal of Heat and Mass Transfer, Vol. 13, Issue 2, pp. 263–274, 1970.
    [18] J. Zhang, and, F. C. Lai, "Heat Transfer Enhancement for Flows in a Channel with Corona Wind Generator," ASME International Mechanical Engineering Congress and Exposition, 2010.
    [19] A. Shooshtari, M. Ohadi, and H. R. F. Franpa, “Experimental and Numerical Analysis of Electrohydrodynamic Enhancement of Heat Transfer in Air Laminar Channel Flow,” Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003.
    [20] F. C. Lai and J. Mathew, “Heat Transfer Enhancement by EHD-Induced Oscillatory Flows,” Journal of Heat Transfer, Part B, Vol. 128, pp. 861-869, 2006.
    [21] F. C. Lai, and K. Tay, “Electrohydrodynamically-Enhanced Forced Convection in a Horizontal Channel with Oscillatory Flows,” Heat Transfer Engineering, Vol. 31, Issue 2, pp. 147-156, 2010.
    [22] D. B. Go, R. A. Maturana, T. S. Fisher, and S. V. Garimella, “Enhancement of External Forced Convection by Ionic Wind”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 6047–6053, 2008.
    [23] B. L. Owsenek, J. Seyed-Yagoobi, and R. H. Page, “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate,” Journal of Heat Transfer, Vol. 117, No. 2, pp. 309-315, 1995.
    [24] 謝維哲,”以EHD技術增強熱傳之研究”,國立清華大學動力機械工程學系碩士論文,中華民國96年。
    [25] H. Yang and F. C. Lai, “Effects of Joule Heating on EHD-Enhanced Natural Convection in an Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 20, No. 4, pp. 939-945, 2006.
    [26] M. Huang and F. C. Lai, “Numerical Study of EHD-Enhanced Forced Convection Using Two-Way Coupling,” Journal of Heat Transfer, Vol. 125, No. 4, pp. 760-764, 2003.
    [27] M. Molki, and P. Damronglerd, "Electrohydrodynamic Enhancement of Heat Transfer for Developing Air Flow in Square Ducts," Heat Transfer Engineering, Vol. 27, No. 1, pp. 35-45, 2006.
    [28] F. F. Chen, “Industrial Applications of Low-Temperature Plasma Physics,” Phys Plasmas, Vol. 2, No. 6, pp. 2164-2175, 1995.
    [29] D. J. Schlitz, S. V. Garimella, and T. S. Fisher, "Numerical Simulation of Microscale Ion-Driven Air Flow," ASME Conference Proceedings Vol. 2003, No. 37149, pp. 303-310, 2003.
    [30] C. Young Nam, C. Jen-Shih, A. B. Alexander, and J. Mizeraczyk, "Numerical Modeling of near Corona Wire Electrohydrodynamic Flow in a Wire-Plate Electrostatic Precipitator," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 1, pp. 119-124, 2007.
    [31] K. Adamiak and P. Atten, "Simulation of Corona Discharge in Point–Plane Configuration," Journal of Electrostatics, Vol. 61, No. 2, pp. 85-98, 2004.
    [32] F. C. Lai and R. K. Sharma, "EHD-Enhanced Drying with Multiple Needle Electrode," Journal of Electrostatics, Vol. 63, No. 3–4, pp. 223-237, 2005.
    [33] F. C. Lai and K. W. Lai "EHD-Enhnaced Drying with a Wire Electrode," Drying Technology, Vol. 20, No. 7, pp. 1393–1405, 2007.
    [34] A. Esehaghbeygi and M. Basiry, "Electrohydrodynamic (EHD) Drying of Tomato Slices (Lycopersicon esculentum)," Journal of Food Engineering, Vol. 104, No. 4, pp. 628-631, 2011.
    [35] W. Cao, Y. Nishiyama, and S. Koide, "Electrohydrodynamic Drying Characteristics of Wheat Using High Voltage Electrostatic Field," Journal of Food Engineering, Vol. 62, No. 3, pp. 209-213, 2004.
    [36] M. Basiry and A. Esehaghbeygi, "Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica napus L.)," Journal of Electrostatics, Vol. 68, No. 4, pp. 360-363, 2010.
    [37] A. V. Kozlov, Plasma Actuators for Bluff Body Flow Control, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Indiana, 2007.
    [38] R. Futrzynski, Drag Reduction Using Plasma Actuators, KTH Engineering Sciences, Stockholm, Sweden, 2015.
    [39] L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate," IEEE Transactions on Industry Applications, Vol. 38, No. 6, pp. 1478-1485, 2002.
    [40] E. Moreau, L. Léger, and G. Touchard, "Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s," Journal of Electrostatics, Vol. 64, No. 3–4, pp. 215-225, 2006.
    [41] J. W. Ferry, Thrust Measurement of Dielectric Barrier Discharge Plasma Actuators and Power Requirements for Aerodynamic Control, Aerospace Engineering, University of Missouri, 2010.
    [42] D. Ashpis and D. Thurman, "DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines-Simulation of Flight Conditions in Test Chambers by Density Matching," 42nd AIAA Plasmadynamics and Lasers Conference, 2011.
    [43] M. Kuhnhenn, B. Simon, I. Maden, S. Grundmann, and J. Kriegseis, "Cause-Effect Relations between Discharge Capacitance and Volume Forces of DBD Plasma Actuators," European Drag Reduction and Flow Control Meeting, 2015.
    [44] M. Kotsonis, S. Ghaemi, L. Veldhuis, and F. Scarano, "Measurement of the Body Force Field of Plasma Actuators," Journal of Physics D: Applied Physics, Vol. 44, p. 045204, 2011.
    [45] R. Durscher, and S. Roy, "Force Measurement Techniques and Preliminary Results using Aerogels and Ferroelectrics for Dielectric Barrier Discharge Actuators," 42nd AIAA Plasmadynamics and Lasers Conference, 2011.
    [46] A. Gulec, L. Oksuz, and N. Hershkowitz, "Optical Studies of Dielectric Barrier Plasma Aerodynamic Actuators," Plasma Sources Science and Technology, Vol. 20, pp.125-138, 2011.
    [47] M. Blajan, Y. Mizuno, A. Ito, and K. Shimizu, "Microplasma Actuator for EHD Induced Flow," IEEE on Industry Applications Society Annual Meeting, 2015.
    [48] J. W. Gregory, C. L. Enloe, G. I. Font, and T. E. McLaughlin, "Force Production Mechanisms of a Dielectric-Barrier Discharge Plasma Actuator," 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
    [49] Y. Suzen, G. Huang, J. Jacob, and D. Ashpis, "Numerical Simulations of Plasma Based Flow Control Applications," 35th AIAA Fluid Dynamics Conference and Exhibit, 2005.
    [50] Y. B. Suzen, P. G. Huang, and D. E. Ashpis, “Numerical Simulations of Flow Separation Control in Low-Pressure Turbines Using Plasma Actuators,” 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.
    [51] B. Jayaraman and W. Shyy, "Modeling of Dielectric Barrier Discharge-Induced Fluid Dynamics and Heat Transfer," Progress in Aerospace Sciences, Vol. 44, Issue 3, pp. 139–191, 2008.
    [52] D. M. Orlov, Modelling and Simulation of Single Dielectric Barrier Dischare Plasma Actuators, M.S. Thesis, Aerospace and Mechanical Engineering, University of Notre Dame, Indiana, 2006.
    [53] J. P. Boeuf, Y. Lagmich, and L. C. Pitchford, "Contribution of Positive and Negative Ions to the Electrohydrodynamic Force in a Dielectric Barrier Discharge Plasma Actuator Operating in Air," Journal of Applied Physics, Vol. 106, Issue 2, p. 023115, 2009.
    [54] G. I. Font, C. L. Enloe, and T. E. McLaughlin, "Effect of Volumetric Momentum Addition on the Total Force Production of a Plasma Actuator," 39th AIAA Fluid Dynamics Conference, 2009.
    [55] J. Zito, D. Arnold, T. Houba, J. Soni, R. Durscher, and S. Roy, "Microsale Dielectric Barrier Discharge Plasma Actuators: Performance Characterization and Numerical Comparison," 43rd AIAA Plasmadynamics and Lasers Conference, 2012.
    [56] T. Yamamoto and H. R. Velkoff, "Electrohydrodynamics in an Electrostatic Precipitator," Journal of Fluid Mechanics, Vol. 108, pp. 1-18, 1981.
    [57] B. Komeilia, J. S. Changa, G. D. Harvela, C. Y. Chingc and, D. Brociloa, "Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump under Negative Corona Operations," Journal of Electrostatics, Vol. 66, No. 5–6, pp. 342–353, 2008.
    [58] Y. T. Birhane, S. C. Lin and F. C. Lai, "Flow Characteristics of a Single Stage EHD Gas Pump in Circular Pipe," Journal of Electrostatics, Vol. 76, pp. 8–17, 2015.
    [59] D. Fylladitakis, M. P. Theodoridis, and A. X. Moronis, “Review on the History, Research, and Applications of Electrohydrodynamics,“ IEEE Transactions on Plasma Science, Vol. 42, No. 2, pp. 358-375, 2014.
    [60] M. Rickard, D. Dunn-Rankin, F. Weinberg, and F. Carleton, "Characterization of Ionic Wind Velocity," Journal of Electrostatics, Vol. 63, No. 6–10, pp. 711-716, 2005.
    [61] M. Rickard, D. Dunn-Rankina, F. Weinbergb, and F. Carletonb, “Maximizing Ion-Driven Gas Flows,” Journal of Electrostatics, Vol. 64, No. 6, pp. 368-376, 2006.
    [62] H. Tsubone, J. Ueno, B. Omeili, S. Minami, G. D. Harvel, K. Urashima, C. Y. Ching, and J. S. Chang, "Flow Characteristics of DC Wire-Non-Parallel Plate Electrohydrodynamic Gas Pumps," Journal of Electrostatics Vol. 66, No. 1–2, pp. 115-121, 2008.
    [63] B. Komeili, J. S. Chang, G. D. Harvel, C. Y. Ching, and D. Brocilo, "Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump under Negative Corona Operations," Journal of Electrostatics, Vol. 66, No. 5–6, pp. 342-353, 2008.
    [64] E. Moreau, and G. Touchard, "Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges," Journal of Electrostatics, Vol. 66, No. 1–2, pp. 39-44, 2008.
    [65] N. M. Brown, and F. C. Lai, "Electrohydrodynamic Gas Pump in a Vertical Tube," Journal of Electrostatics, Vol. 67, No. 4, pp. 709-714, 2009.
    [66] J. D. Moon, and D. H. Hwang, "An EHD Gas Pump Utilizing a Ring/Needle Electrode," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, No. 2, pp.352-358, 2009.
    [67] N. Takeuchi, and K. Yasuoka, "Effect of Discharge Electrode Parameters on the Flow Velocity Profile of the Wire-Rod Type Electrohydrodynamic Gas Pump Exit," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, No. 3, pp.615-621, 2009.
    [68] H. Tsubone, J. S. Chang, G. D. Harvel, and K. Urashima, "Non-Moving Component Pumping of Narrow Gas Flow Channels by an Electrohydrodynamic Gas Pumps," International Journal of Plasma Environmental Science and Technology, Vol. 3, No. 2, pp. 151-155, 2009.
    [69] J. S. Chang, H. Tsubone, Y. N. Chun, A. A. Berezin, and K. Urashima "Mechanism of Electrohydrodynamically Induced Flow in a Wire-Non-Parallel Plate Electrode Type Gas Pump," Journal of Electrostatics Vol. 67, No. 2–3, pp. 335-339, 2009.
    [70] Q. Wei, X. Lingzhi, T. Xiaoya, and Y. Lanjun, "The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air," IEEE Transactions on Plasma Science, Vol. 38, No. 10, pp. 2848-2853, 2010.
    [71] C. Kim, D. Park, K. C. Noh, and J. Hwang, "Velocity and Energy Conversion Efficiency Characteristics of Ionic Wind Generator in a Multistage Configuration", Journal of Electrostatics, Vol. 68, No. 1, pp. 36-41, 2011.
    [72] N. Takeuchi and K. Yasuoka, "Wire–Rod Type Electrohydrodynamic Gas Pumps with and without Insulation Cover over Corona Wire", IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 3, pp. 801-808, 2011.
    [73] J. Zhang and F. C Lai, "Effect of Emitting Electrode Number on the Performance of EHD Gas Pump in a Rectangular Channel", Journal of Electrostatics, Vol. 69, No. 6, pp. 486-493, 2011.
    [74] A. K. M. M. H. Mazumder and. F. C. Lai, "Two-Stage Electrohydrodynamic Gas Pump in a Square Channel," Proc. ESA Annual Meeting on Electrostatics, 2011.
    [75] Y. T. Birhane, S. C. Lin, and T. Y. Huang, "Variation of Entrance Length effect on EHD Gas Pump Performance," Key Engineering Materials, Vol. 649, pp. 1-8, 2015.
    [76] L. Leger, E. Moreau, and G. G. Touchard, "Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate," IEEE Transactions on Industry Applications, Vol. 38, No. 6, pp. 1478-1485, 2002.
    [77] T. Yamamoto, M. Okuda, and M. Okubo, "Three-Dimensional Electrohydrodynamics in Electrostatic Precipitator," 2002 Annual Report Conference on, Electrical Insulation and Dielectric Phenomena, pp. 228-231, 2002.
    [78] L. Zhao and K. Adamiak, "EHD Flow in Air Produced by Electric Corona Discharge in Pin–Plate Configuration," Journal of Electrostatics, Vol. 63, No. 3–4, pp. 337-350, 2005.
    [79] J. Podliński, J. Dekowski, J. Mizeraczyk, D. Brocilo, and J. S. Chang, "Electrohydrodynamic Gas Flow in a Positive Polarity Wire-Plate Electrostatic Precipitator and the Related Dust Particle Collection Efficiency," Journal of Electrostatics, Vol. 64, No. 3–4, pp. 259-262, 2006.
    [80] J. S. Chang, D. Brocilo, K. Urashima, J. Dekowski, J. Podlinski, J. Mizeraczyk, and G. Touchard, "On Set of EHD Turbulence for Cylinder in Cross Flow under Corona Discharges," Journal of Electrostatics, Vol. 64, No. 7–9, pp. 569-573, 2006.
    [81] J. S. Chang, J. Ueno, H. Tsubone, G. D. Harvel, S. Minami, and K. Urashima, ”Electro-Hydrodynamically Induced Flow Direction in a Wire-Non-Parallel Plate Electrode Corona Discharge”, Journal of Physics D: Applied Physics, Vol. 40, No. 17, pp.5109-5111, 2007.
    [82] O. Fawole and M. Tabib-Azar, "A Novel Geometry for a Corona Wind EHD Pump," IEEE Sensors 2014 Proceedings, 2014.
    [83] B. R. Maskell, "The Effect of Humidity on a Corona Discharge in Air," Royal Aircraft Establishment, 1970.
    [84] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona Discharge Process," IEEE Transactions on Plasma Science, Vol. 19, No. 6, pp. 1152-1166, 1991.
    [85] E. Moreau, and G. Touchard, "Enhancing the Mechanical Efficiency of Electric Wind in Corona Discharges," Journal of Electrostatics, Vol. 66, No. 1–2, pp. 39-44, 2008.
    [86] J. S. Townsend, “The Conductivity Produced in Gases by the Motion of Negatively-Charged Ions," Nature. 62, pp. 340-341, 1900.
    [87] J. S. Townsend, Electricity in Gases, Oxford: Clarendon Press, 1915.
    [88] A. K. M. M. H. Mazumder, X.-B. Zhao, and F. C. Lai, “Effects of Grounded Electrodes Size on the Performance of EHD Gas Pump in a Square Channel”, ESA Annual Meeting on Electrostatics, 2011.
    [89] W. G. Steele, R. P. Taylor, R. E. Burrell, and H. W. Coleman, "Use of Previous Experience to Estimate Precision Uncertainty of Small Sample Experiments," AIAA Journal, Vol. 31, pp. 1891-1896, 1993.
    [90] A. O. Ongkodjojo, Electrohydrodynamic Microfabricated Ionic Wind Pumps for Electronics Cooling Applications, Electrical Engineering and Computer Science, Case Western Reserve, America, 2013.

    QR CODE