簡易檢索 / 詳目顯示

研究生: 陳昱志
Yu-Zhih Chen
論文名稱: 基於深度學習架構之LDPC解碼器與硬體設計
LDPC Decoder Utilizing Deep Learning Architecture and Hardware Design
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 林敬舜
ChingShun Lin
王瑞堂
Jui-Tang Wang
劉建成
Jian-Cheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 低密度奇偶校驗碼解碼器低密度奇偶檢驗碼深度神經網路
外文關鍵詞: Low Density Parity Check Decoder
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出應用於5G 行動通訊的低密度奇偶檢查碼(LDPC)解碼器超大型積體電路(VLSI)設計,以基於LDPC NMSA的共享參數神經網路解碼演算法做為基礎,進行訓練方式的改良,訓練方式則使用限制校正因子參數的訓練範圍,使得模型驅動的神經網路符合LDPC模型架構,進而增加其解碼效能,在迭代方面則可以提升效能達到減少迭代次數的目的,在模擬演算法效能時,可以得知當SNR為5dB時,BER的解碼效能相較[6]約有7.13dB的效能提升。
本論文演算法使用的軟體模擬環境為Python以及MATLAB ,在硬體設計上則使用Vivado進行RTL coding的撰寫以及電路合成,而晶片設計採用TSMC 40nm CMOS製程技術進行實作。


This paper presents a Very Large-Scale Integration (VLSI) design of a Low-Density Parity-Check (LDPC) decoder for application in 5G mobile communication. The design is based on a neural network decoding algorithm utilizing LDPC Normalized Min-Sum Algorithm (NMSA) and incorporates improvements in the training methodology. The training process employs restricted correction factor parameter ranges to ensure that the model-driven neural network aligns with the LDPC model structure, thereby enhancing its decoding performance. Additionally, the iterative process is optimized to reduce the number of iterations and achieve improved performance. Simulating the algorithm's performance reveals that at a Signal-to-Noise Ratio (SNR) of 5dB, the Bit Error Rate (BER) decoding performance is approximately 7.13dB better compared to [6].
The software simulation environment employed in this paper utilizes Python and MATLAB. For hardware design, RTL coding is carried out using Vivado, followed by circuit synthesis. The chip design is implemented using TSMC's 40nm CMOS fabrication process technology.

圖目錄 v 表目錄 vii 第1章 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 1.3. 論文架構 2 第2章 低密度奇偶檢查碼 3 2.1. 低密度奇偶檢查碼介紹 3 2.1.1. 基本概念介紹 3 2.1.2 Tanner Graph 4 2.2 LDPC使用標準及編碼方式介紹 6 2.2.1 LDPC在IEEE802.16e之標準 6 2.2.2 LDPC編碼方式介紹 9 2.3 LDPC解碼方式介紹 11 2.3.1Sum-of-Product Algorithm (SPA) 11 2.3.2 Minimum-Sum Algorithm (MSA) 15 第3章 深度學習介紹 20 3.1. 前饋式神經網路(Feed-Forward Neural Network) 20 3.1.1. 輸入層 (input layer) 21 3.1.2. 隱藏層(Hidden Layer) 21 3.1.3. 輸出層(Output Layer) 22 3.2. 神經網路訓練 22 3.2.1 損失函數(Loss Function) 23 3.2.1.1二元交叉熵(Binary Cross-Entropy) 23 3.2.2 激活函數(Active Function) 23 3.2.3 反向傳播法(Backpropagation algorithm ) 25 3.2.4優化器(Optimizer) 26 第4章 LDPC NMS神經網路解碼器 27 4.1 LDPC NMS神經網路解碼器基本架構介紹 27 4.1.1 Neural Normalized Min-Sum LDPC Decoding 27 4.1.2 Shared Neural Normalized Min-Sum LDPC Decoding 30 4.3架構改良 32 第5章 演算法模擬及驗證 35 5.1環境設定 35 5.2編解碼驗證流程 38 5.3模擬效能 39 第6章 解碼器硬體架構 42 6.1 電路方塊圖 42 6-2 PE CV 架構圖 43 6-3 PE VC 架構圖 43 6.4文獻比較 錯誤! 尚未定義書籤。 第7章 結論與未來展望 50 參考文獻 51 附錄一 中英名稱對照表 54

參考文獻
[1] R. G. Gallager, ‘‘Low-density parity-check codes,’’ IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.3GPP TSG RAN WG1 Meeting 87, November 2016.
[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes” Electronics Letters, vol.33 (6), pp. 457-458, 1997.
[3] E. Nachmani, Y. Be'ery and D. Burshtein, "Learning to decode linear codes using deep learning," 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2016, pp. 341-346, doi: 10.1109/ALLERTON.2016.7852251.
[4] J. Gao, B. Zhang, B. Wang and Y. Liu, "A LDPC Decoding Algorithm based on Convolutional Neural Network," 2022 9th International Conference on Dependable Systems and Their Applications (DSA), Wulumuqi, China, 2022, pp. 1065-1066, doi: 10.1109/DSA56465.2022.00165.
[5] N. Shah and Y. Vasavada, "Neural Layered Decoding of 5G LDPC Codes," in IEEE Communications Letters, vol. 25, no. 11, pp. 3590-3593, Nov. 2021, doi: 10.1109/LCOMM.2021.3113610.
[6] Q. Wang, S. Wang, H. Fang, L. Chen, L. Chen and Y. Guo, "A Model-Driven Deep Learning Method for Normalized Min-Sum LDPC Decoding," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICCWorkshops49005.2020.9145237.
[7] N. Doan, S. A. Hashemi, E. N. Mambou, T. Tonnellier and W. J. Gross, "Neural Belief Propagation Decoding of CRC-Polar Concatenated Codes," ICC 2019 - 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 2019, pp. 1-6, doi: 10.1109/ICC.2019.8761399.
[8] O. Solomon et al., "Deep Unfolded Robust PCA With Application to Clutter Suppression in Ultrasound," in IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 1051-1063, April 2020, doi: 10.1109/TMI.2019.2941271.
[9] N. Wiberg ; H.-A. Loeliger ; R. Kotter “Codes and iterative decoding on general graphs”
[10] D.J. C. MacKay, “Gallager Codes that are Better Than Turbo Codes,” Proceedings of the 36th Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sep.1998.
[11] R. Tanner, ”A recursive approach to low complexity codes” IEEE Transactions on Information Theory ( Volume: 27 , Issue: 5 , Sep 1981 )
[12] T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of Capacity Approaching Low-Density Parity-Check Codes, “IEEE Trans. Inf. Theory, vol.47, no.2, pp. 619-637, Feb. 2001.
[13] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika, et al., Database of channel codes and ml simulation results, University of Kaiserslautern, 2016, [online] Available: www.uni-kl.de/channel-codes.
[14] M.P.C. Fossorier ; M. Mihaljevic ; H. Imai“Reduced complexity iterative decoding of low-density parity check codes based on belief propagation”, IEEE Transactions on Communications ( Volume: 47 , Issue: 5 , May 1999 ).
[15] D. Oh and K. K. Parhi, "Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 1, pp. 105-115, Jan. 2010, doi: 10.1109/TCSI.2009.2016171.
[16] H. He, S. Jin, C. -K. Wen, F. Gao, G. Y. Li and Z. Xu, "Model-Driven Deep Learning for Physical Layer Communications," in IEEE Wireless Communications, vol. 26, no. 5, pp. 77-83, October 2019, doi: 10.1109/MWC.2019.1800447.
[17] S. Usman and M. M. Mansour, "An Optimized VLSI Implementation of an IEEE 802.11n/ac/ax LDPC Decoder," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180782.
[18] R. Goriushkin, P. Nikishkin, E. Likhobabin and V. Vityaze, "FPGA Implementation of LDPC Decoder Architecture for Wireless Communication Standards," 2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 2021, pp. 1-4, doi: 10.1109/MOCAST52088.2021.9493380.

無法下載圖示 全文公開日期 2033/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE