簡易檢索 / 詳目顯示

研究生: 顏佑
Yu Yen
論文名稱: 應用集群分析技術於微電網調適保護之研究
Apply Clustering Technology to Perform Adaptive Protection in Microgrid
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 吳啟瑞
Chi-Jui Wu
楊金石
Jin-shyr Yang
楊明達
Ming-Ta Yang
辜志承
Jyh-Cherng Gu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 124
中文關鍵詞: 智慧型電子裝置保護管理系統集群集群分析群組設定IEC 61850
外文關鍵詞: Intelligent Electronic Device, Protection Management System, Cluster, Clustering, Setting Group, IEC 61850
相關次數: 點閱:504下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微電網主要組成包括分散式電源、儲能設備、電力轉換器、交/直流負載、監控設備及保護裝置。而微電網會因分散式電源的間歇發電特性與運轉模式之不同等因素,導致電力潮流與故障電流大小及方向不固定,因此傳統輻射式的非方向性過電流保護方案已經無法滿足微電網之保護要求,能隨微電網結構與狀態進行調整之調適保護是最佳之選擇。
    本論文建置一套整合智慧型電子裝置(IED)、IEC 61850通訊標準及監控平台(SCADA)之微電網保護管理系統(PMS)。利用IED量測之電壓、電流及開關狀態等系統資訊,透過IEC 61850通訊協定回傳至SCADA。保護協調應用IEC 61850之GOOSE機制與IED內部邏輯規劃,於IED間傳遞跳脫與閉鎖訊號,達成併網、匯流排、線路與後備保護。並應用IED群組設定(Setting Group)功能,以滿足微電網狀態多變的特性。但因目前商用IED群組設定數量上的限制,無法針對微電網所有可能之運轉狀態與條件進行相應之群組設定規劃。為解決此問題,本文透過集群分析(Clustering)技術將微電網運轉狀態分為若干集群,而IED群組設定依據集群進行規劃,其結果作為IED群組設定之依據。PMS具有隨微電網運轉狀態而自我調適之能力,可根據SCADA所匯集之微電網運轉資訊,判斷IED是否需要變更群組設定。
    核研所微電網為本論文用來探討與驗證之範例系統,藉助ETAP電力系統分析軟體進行案例模擬。結果表明PMS在不同的微電網運轉情境下,依規畫皆可選擇IED適當之群組設定,達到微電網全面保護之目的。


    The composition of the microgrid includes distributed generator, energy storage devices, power converters, AC/DC loads, monitoring equipment, and protection devices. However, due to the intermittent power generation characteristics and operation modes of the distributed generator. The power flow and fault current of microgrid will not be fixed in the magnitude and direction. Therefore, the traditional radiant single overcurrent protection scheme cannot meet the protection requirements of the microgrid.
    This paper builds a Protection Management System (PMS) that integrates intelligent electronic devices (IED), IEC 61850 communication standards and SCADA monitoring platforms. Microgrid system information such as voltage, current and switching status measured by IED is transmitted back to SCADA via IEC 61850 communication protocol. The protection coordination uses the GOOSE mechanism of IEC 61850 and the internal logic planning of the IED to transmit the trip and block signals among the IEDs. To achieve grid-connect, bus, line and backup protection.This paper uses the IED Setting Group function to meet the changing characteristics of the microgrid. However, due to the limitation of the number of IED setting group. It is impossible to plan the setting group for all operating states of the microgrid. In order to solve the limitation of the number of IED setting group. This paper uses clustering to divide the microgrid operating state into several clusters, and the IED setting group can be planned according to these clusters. The clustering result can be use to set the IED setting group. The PMS can determine whether the IED needs to change the protection group based on the SCADA microgrid operation information. And through the logical node of the IED to transmit the signal of the change group setting. Let the PMS has the ability to self-adjust with the operating state of the microgrid.
    This paper uses the microgrid of Institute of Nuclear Energy Research as an example system, the ETAP power system analysis software is used for simulation analysis. The verification results show that the PMS can select the appropriate setting group of the IED in different microgrid operation scenarios to achieve the goal of microgrid protection.

    目錄 中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 1 1.3 研究方法 3 1.4 論文架構 4 第二章 微電網發展現況 5 2.1 前言 5 2.2 國外 5 2.2.1 美國 5 2.2.2 歐洲 7 2.2.3 日本 10 2.3 國內 12 2.3.1 台電綜研所微電網 12 2.3.2 核能研究所微電網 14 2.3.3 澎湖智慧電網 16 2.4 微電網保護策略探討 18 2.4.1 美國CERTS微電網 18 2.4.1.1 微電網系統架構 18 2.4.1.2 保護方式介紹 19 2.4.1.3 故障電流分析 21 2.4.1.4 保護參數設定 22 2.4.2 芬蘭Hailuoto島微電網 23 2.4.2.1 微電網系統架構 23 2.4.2.2 保護方式介紹 24 2.4.2.3 故障電流分析 25 2.4.2.4 保護參數設定 26 2.5 微電網保護策略比較與改善 28 2.6 本章小結 29 第三章 基於群組設定之微電網保護管理系統 31 3.1 前言 31 3.2 微電網保護管理系統架構 32 3.2.1 智慧型電子裝置 33 3.2.2 IEC 61850通訊協定 35 3.2.3 SCADA 40 3.3 微電網保護管理系統建置 42 3.3.1 微電網拓樸分析 43 3.3.2 IED保護參數設定 47 3.3.3 IED群組設定功能 49 3.3.4 IED保護邏輯規劃與GOOSE傳遞設定 50 3.4 本章小結 58 第四章 應用集群分析於IED群組設定調適分析 59 4.1 前言 59 4.2 核研所微電網系統架構 59 4.3 核研所微電網系統參數 60 4.4 集群分析 64 4.4.1 K-means原理 65 4.4.2 K-means步驟 66 4.4.3 K-means範例 69 4.5 應用集群分析於IED群組設定 71 4.5.1 分析流程 71 4.5.2 集群分析結果 72 4.6 本章小結 82 第五章 IED群組設定調適分析案例規劃 83 5.1 前言 83 5.2 範例系統 83 5.3 範例系統情境規劃 85 5.4 案例結果與分析 86 5.4.1 情境1 86 5.4.2 情境2 93 5.4.3 情境3 99 5.4.4 情境4 106 5.5 本章小結 113 第六章 結論與未來研究方向 115 6.1 結論 115 6.2 未來研究方向 116 參考文獻 117

    [1] Adam Hirsch, Yael Parag, Josep Guerrero, “Microgrid: A review of technologies, key drives, and outstanding issues,” School of Sustainability, Interdisciplinary Center (IDC) - Department of Energy Technology, 9 September 2017.
    [2] P. Gupta, R. S. Bhatia, and D. K. Jain, “Adaptive Protection Schemes for the Microgrid in a Smart Grid Scenario: Technical Challenges,” in Proceeding of IEEE Innovative Smart Grid Technologies - Asia, pp. 1-5, Bangalore, 10-13 November, 2013.
    [3] Andrew Harrison Hubble, and Taha Selim Ustun, “Feasibility of microgrid optimization and grid extension for rural electrification,” in Proceeding of IEEE Region 10 Conference (TENCON), pp. 1266-1269, Singapore, 22-25 November, 2016.
    [4] Matthew Backes, Ikponmwosa Idehen, Tim Yardley, and Prosper Panumpabi, “Off-grid microgrid development for the village of Katumbi in Tanzania,” in Proceeding of North American Power Symposium (NAPS), pp. 1-5, Denver, 18-20 September, 2016.
    [5] Xiaolong Guo, Peng Wang, Wenping Qin, Peng Wang, Xiaoqing Han, and Ying Wang, “A Novel Line Overcurrent Protection Scheme for Distribution Networks with DGs,” in Proceeding of IEEE International Conference on Power System Technology (POWERCON), pp. 1-5, Wollongong, 28 September-1 October, 2016.
    [6] A. K. Sahoo, “Protection of Microgrid through Coordinated Directional Over-current Relays,” in Proceeding of Global Humanitarian Technology Conference, pp. 129-134, Trivandrum, 26-27 September, 2014.
    [7] T. S. Ustun, C. Ozansoy, and A. Zayegh, “Differential Protection of Microgrids with Central Protection Unit Support,” in Proceeding of IEEE TENCON Spring Conference, pp. 15-19, Sydney, 17-19 April, 2013.
    [8] M. Dewadasa, A. Ghosh, and G. Ledwich, “Protection of Microgrids Using Differential Relays,” in Proceeding of Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, Brisbane, 25-28 September, 2011.
    [9] L. J. Jin, M. M. Jiang, and G. Y. Yang, “Fault Analysis of Microgrid and Adaptive Distance Protection Based on Complex Wavelet Transform,” in Proceeding of Electronics and Application Conference and Exposition , pp. 360-364, Shanghai, 5-8 November, 2014.
    [10] H. Al-Nasseri, M. A. Redfern, and F. Li, “A Voltage based Protection for Micro-grids containing Power Electronic Converters,” in Proceeding of IEEE Power Engineering Society General Meeting, pp. 1-7, Montreal, June, 2006.
    [11] M. A. Zamani, T. S. Sidhu, and A. Yazdani, “A Protection Strategy and Microprocessor-Based Relay for Low-Voltage Microgrids,” IEEE Transactions on Power Delivery, Vol. 26, No. 3, pp. 1873-1883, July, 2011.
    [12] A. Oudalov, A. Fidigatti, T. Degner, B. Valov, and C. Hardt, “ Novel protection systems for microgrids”, Advanced Architectures and Control Concepts for MORE MICROGRIDS Work Package C, November, 2009.
    [13] C. Ozansoy, “Design of an Adaptive Protection System for Microgrids with Distributed Energy Resources in Accordance with IEC 61850-7-420,” in Proceeding of International Conference on Electrical and Electronics Engineering (ELECO), pp. 474-478, Bursa, 26-28 November, 2015.
    [14] L. Che, M. E. Khodayar, and M. Shahidehpour, “Adaptive Protection System for Microgrids: Protection Practices of a Functional Microgrid System,” IEEE Electrification Magazine, Vol. 2, No. 1, pp. 66-80, March, 2014.
    [15] F. Coffele, C. Booth, and A. Dyśko, “An Adaptive Overcurrent Protection Scheme for Distribution Networks,” IEEE Transactions on Power Delivery, Vol. 30, No. 2, pp. 561-568, April, 2015.
    [16] T. Y. Wong, C. Shum, W. H. Lau, S. H. Chung, K. F. Tsang, and C. F. Tse, “Modeling and co-simulation of IEC61850-based microgrid protection,” in Proceeding of IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 582-587, Sydney, 6-9 November, 2016.
    [17] F. Coffele, S. Blair, C. Booth, J. Kirkwood, and B. Fordyce, “Demonstration of Adaptive Overcurrent Protection using IEC 61850 Communications,” in Proceeding of International Conference and Exhibition on Electricity Distribution (CIRED), pp. 1-4, Stockholm, 10-13 June, 2013.
    [18] D. Ishchenko, A. Oudalov, and J. Stoupis, “Protection Coordination
    in Active Distribution Grids with IEC 61850,” in Proceeding of IEEE
    PES Transmission and Distribution Conference and Exposition, pp.
    1-6, Orlando, 7-10 May, 2012.
    [19] R. H. Lasseter, “CERTS Microgrid,” in Proceeding of IEEE International Conference on System of Systems Engineering (SoSE), pp. 1-5, San Antonio, 16-18 April, 2007.
    [20] Joseph H. Eto, Robert Lasseter, David Klapp, Amrit Khalsa, Ben Schenkman, Mahesh Illindala, and Surya Baktiono, “The CERTS Microgrid Concept, as Demonstrated at the CERTS/AEP Microgrid Test Bed,” Lawrence Berkeley National Laboratory, Orlando, September, 2018
    [21] Wei Fenga, Ming Jina, Xu Liua, Yi Baoa, Chris Marnaya, Cheng Yaod, and Jiancheng Yud, “A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy 228, pp. 1656-1668, 20 June, 2018
    [22] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids: An Overview of Ongoing Research, Development, and Demonstration Projects,” IEEE Power and Energy Magazine, Vol. 5, No. 4, pp. 78-94, July, 2007.
    [23] Nikos Hatziargyriou, “Microgrids: Architectures and Control First Edition,” John Wiley & Sons, Ltd., 2014.
    [24] European Commission, Advanced Architectures and Control Concepts for More Microgrids, More Microgrids Project Final Results, 2009.
    [25] N. Hatziargyriou, The More Microgrids Project, Demonstrations of smart electricity distribution network solutions, Contractors meeting, Brussels, 25 Septmber, 2009.
    [26] Jacob Østergaard and John Eli Nielsen, “The Bornholm Power System An Overview,” Centre for Electrical Technology Department of Electrical Engineering Technical University of Denmark, 13th edition, May, 2010.
    [27] EcoGrid, EcoGrid EU: From Implementation to Demonstration: A large scale demonstration of a real-time market for demand side participation, 2015.
    [28] GRID4U, GRID4EU Periodic Report for Year 4, March, 2016.
    [29] B. A. Bremdal, EMPOWER: Local Electricity Retail Markets for Prosumer Smart Grid Power Services, NCE Smart and Narvik University College, April, 2015.
    [30] Patrick Van Hove, R&D Activities in EU and Microgrids, Aalborg 2015 Symposium on Microgrids, Aalborg, 27-28 August, 2015
    [31] Kazuyuki Takada, Microgrid Research in Japan & New Mexico Project, Vancouver 2010 Symposium on Microgrids, Vancouver, 21-22 July, 2010
    [32] Satoshi Morozumi, Smart Community Demonstration in NEDO, The New Energy and Industrial Technology Development Organization (NEDO), 26 May, 2012
    [33] Satoshi Morozumi, DER Integration Demonstration in Japan,IRED 2014, Kyoto, 17-20 November, 2014
    [34] Satoshi Morozumi, The Result obtained from New Mexico Demonstration, The New Energy and Industrial Technology Development Organization (NEDO), 15 June, 2016
    [35] 經濟部能源局,智慧電網總體規劃方案,2017年2月。
    [36] 張永瑞、姜正綸、李奕德,微電網發展前景與技術剖析,台灣能源期刊第二卷第三期,第269-278頁,2015年9月。
    [37] 楊金石,台電智慧電網的推動與應用,台電綜合研究所,2011年。
    [38] 台灣電力公司,微電網試驗場之研製,2011年。
    [39] 左峻德、林法正,台灣智慧電網技術產業介紹,台灣智慧型電網產業協會,2014年4月。
    [40] 核能研究所,獨立型微電網計畫,2014年11月。
    [41] 張永瑞,獨立型微電網系統技術發展與應用,2015年台灣智慧電網技術研討會,2015年10月15日。
    [42] 林法正,澎湖低碳島與智慧電網示範規劃,2012年。
    [43] 張建國、黃怡碩、陳翔雄,澎湖智慧電網示範系統規劃與推動,中華民國第三十六屆電力工程研討會,2015年12月12-13日。
    [44] 林法正、陳彥豪、盧思穎、陳毓文,澎湖群島智慧電網示範介紹,國土及公共治理季刊第五卷第二期,2017年7月。
    [45] H. Nikkhajoei and R. H. Lasseter, Microgrid Fault Protection Based on Symmetrical and Differential Current Components, Public Interest Energy Research Program (PIER) Final Project Report Appendix P, Lawrence Berkeley National Laboratory, December, 2006.
    [46] H. Laaksonen, D. Ishchenko and A. Oudalov, “Adaptive Protection and Microgrid Control Design for Hailuoto Island,” IEEE Transactions on Smart Grid, Vol. 5, No. 3, pp. 1486-1493, May, 2014.
    [47] A. Oudalov, New Technologies for Microgrid Protection, Santiago 2013 Symposium on Microgrids, Santiago, 9-10 September, 2013.
    [48] H. Laaksonen, Hailuoto PSCAD simulations, Smart Grid and Energy Markets, March, 2012.
    [49] P. P. Barker, and R. W. De Mello, “Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems,” in Proceeding of IEEE Power Engineering Society Summer Meeting, pp. 1645-1656, Seattle, 16-20 July, 2000.
    [50] A. Oudalov, L. Milani, E. Ragaini, and A. Fidigatti, Sample Implementation of Adaptive Protection for Low Voltage Networks, PAC World Magazine, June, 2012.
    [51] Arcteq Relays, AQ-F215 Feeder Protection IED Instruction Manual, December, 2017.
    [52] IEC 61850-1, Communication Networks and Systems in Substations Part 1: Introduction and Overview.
    [53] IEC 61850-2, Communication Networks and Systems in Substations Part 2: Glossary.
    [54] IEC 61850-3, Communication Networks and Systems in Substations Part 3: General Requirements.
    [55] IEC 61850-4, Communication Networks and Systems in Substations Part 4: System and project management.
    [56] IEC 61850-5, Communication Networks and Systems in Substations Part 5: Communication Requirements for Functions and Devices Models.
    [57] IEC 61850-6, Communication Networks and Systems in Substations Part 6: Configuration Description Language for Communication in Electrical Substations Related to IEDs.
    [58] IEC 61850-7-1, Communication Networks and Systems in Substations Part 7-1: Basic Communication Structure for Substation and Feeder Equipment Principles and Models.
    [59] IEC 61850-7-2, Communication Networks and Systems in Substations Part 7-2: Basic Communication Structure for Substation and Feeder Equipment Abstract Communication Service Interface(ACSI).
    [60] IEC 61850-7-3, Communication Networks and Systems in Substations Part 7-3: Basic Communication Structure for Substation and Feeder Equipment Common Data Classes.
    [61] IEC 61850-7-4, Communication Networks and Systems in Substations Part 7-4: Basic Communication Structure for Substation and Feeder Equipment Compatible Logical Node Classes and Data Classes.
    [62] IEC 61850-8-1, Communication Networks and Systems in Substations Part 8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3.
    [63] IEC 61850-9-1, Communication Networks and Systems in Substations Part 9-1: Specific Communication Service Mapping (SCSM) Sampled Values over Serial Unidirectional Multidrop Point to Point Link.
    [64] IEC 61850-9-2, Communication Networks and Systems in Substations Part 9-2: Specific Communication Service Mapping (SCSM) Sampled Values over ISO/IEC 8802-3.
    [65] Yulian Rangelov, Nikolay Nikolaev and Milena Ivanova, “The IEC 61850 standard — Communication Networks and Automation Systems from an Electrical Engineering Point of View,” in Proceedings of International Symposium on Electrical Apparatus and Technologies (SIELA), pp. 1-4, 29 June, 2016.
    [66] 蔡岱陵,整合風機於智慧型變電所自動化之研究,碩士學位論文,國立臺灣科技大學電機工程系,2017年6月。
    [67] 鍾心勇,應用IED群組設定功能於微電網故障後重構之保護管理系統,國立臺灣科技大學電機工程系,2016年7月。
    [68] T. S. Ustun, “Design and Development of a Communication-Assisted Microgrid Protection System,” PhD Thesis, School of Engineering and Science, Victoria University, September, 2013.
    [69] D. Turcotte and F. Katiraei, “Fault Contribution of Grid-Connected Inverters,” in Proceeding of IEEE Electrical Power & Energy Conference, pp. 1-5, Montreal, 22-23 October, 2009.
    [70] 王鈞毅,應用類神經網路調適微電網IED保護群組設定之研究,國立臺灣科技大學電機工程系,2017年7月。
    [71] 吳明隆,SPSS統計應用學習實務: 問卷分析與應用統計,新北市:易習,2013年。
    [72] 孫在陽,從EXCEL到POWER BI的大數據分析。檢自https://sites.google.com/view/kensun1/%E8%AA%B2%E7%A8%8B%E5%85%A7%E5%AE%B9/%E5%A4%A7%E6%95%B8%E6%93%9A%E5%88%86%E6%9E%90,2017年。
    [73] MacKay David, “Information Theory, Inference, and Learning Algorithnms,” Cambridge University Press, pp. 284-292, U.k., September, 2003.
    [74] JIANG Chen and GAO Liang, “Study on an Improved Relaying Protection Method Based on Negative-Sequence Power Direction Comparsion and Cluster Algorithm,” Power System Protection and Control, Vol. 44, No. 8, 16 April, 2016.
    [75] Mansour Ojaghi and Vahid Mohammadi, “Use of Clustering to Reduce the Number of Different Setting Groups for Adaptive Coordination of overcurrent Relays,” IEEE TRANSACTIONS ON POWER DELIVERY, Vol. 33, No. 3, June, 2018.

    無法下載圖示 全文公開日期 2021/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/07/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE