簡易檢索 / 詳目顯示

研究生: 王伯隆
Po-lung Wang
論文名稱: 合成含苯並咪唑或苯並噻唑側基之聚苯咪唑及其性質研究
Synthesis and Characterization of New Polybenzimidazoles Containing Pendent Benzimidazole or Benzothiazole Groups
指導教授: 陳燿騰
Yaw-terng Chern
口試委員: 王健珍
Chien-chen Wang
曾文祺
Wen-chi Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 122
中文關鍵詞: 聚苯咪唑
外文關鍵詞: polybenzimidazole
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Part I
    本研究主要合成側鏈含benzimidazole之Polybenzimidazole(PBI),並引進甲基側基應用於質子交換膜的交聯上,合成交聯型之C-PBI聚合物,在未高溫交聯前,這些聚合物具有好的溶解度,其固有黏度範圍在0.9~1.21 dL/g之間,均可塗佈成具韌性之薄膜,在高溫交聯後,這些聚合物有好的熱安定性,高的玻璃轉移溫度( Tg 大約在 300 ℃左右)。未添加交聯劑之聚合物,其抗張強度大於92 MPa,添加交聯劑後,其抗張強度大於101 MPa。未添加交聯劑的聚合物,在摻雜磷酸後,由於膨潤導致機械強度大幅下降,為了提高吸磷酸後薄膜的機械強度,本研究合成了一系列交聯型的C-PBI聚合物。
    PBI質子傳導度隨溫度與磷酸摻雜量增加而增加,由於本研究導入甲基側基,進行交聯形成網狀結構,降低了吸附磷酸的量,提升了機械強度,其中C5-CPBI-BIside-30飽和磷酸摻雜程度達342 wt%,具有高的抗張強度22 MPa,質子傳導度在180℃為65.8 mS/cm,C5-CPBI-BIside-30的濕膜抗張強度與質子傳導度高,有潛力應用於中溫型燃料電池的質子傳導膜。
    這些側基含benzimidazole且有網狀交聯結構的C-PBI薄膜具有高的磷酸摻雜量、高質子傳導度、好的熱安定性且有良好的機械性質,很有潛力成為中溫型燃料電池的質子傳導膜。
    Part II
    本研究主要合成側鏈含benzothiazole之Polybenzimidazole(PBI),引進甲基側基應用於質子交換膜的交聯上,合成交聯型之C-PBI聚合物,在未高溫交聯前,這些聚合物具有好的溶解度,其固有黏度範圍在0.9~1.47 dL/g之間,均可塗佈成具韌性之薄膜,在高溫交聯後,這些聚合物有好的熱安定性,高的玻璃轉移溫度( Tg 大約在 300 ℃左右)。未添加交聯劑之聚合物,其抗張強度大於78 MPa,添加交聯劑後,其抗張強度大於90 MPa。未添加交聯劑的聚合物,在摻雜磷酸後,由於膨潤導致機械強度大幅下降,為了提高吸磷酸後薄膜的機械強度,本研究合成了一系列交聯型的C-PBI聚合物。
    由於本研究導入甲基側基的交聯劑,直接改變原本PBI的結構,導致有些系列在低的交聯程度,磷酸摻雜量比未添加交聯劑的還高,因而有高的吸附磷酸量與機械強度的加強,以C5-CPBI-1-10為例,在160℃溫度下,有高的導電度57.6 mS/cm與好的抗張強度7.9 MPa。
    因此這些含benzothiazole側基交聯型的C-PBI薄膜具有高的磷酸摻雜量、高質子傳導度、好的熱安定性且有良好的機械性質,是成為中溫型燃料電池的質子傳導膜很好的材料。


    Part I
    A series of new polybenzimidazoles (PBIs) with pendant benzimidazole ring had been synthesized. This is the first study that improved mechanical properties of proton exchange membranes via crosslinking reaction using methyl pendent. The uncrosslinked PBI showed good solubility in aprotic solvents. They had high inherent viscosities in the range of 0.9~1.21 dLg-1, and they could form tough and flexible films. After crosslinking, they exhibited high thermal stability and their glass transition temperature exceeded 300oC. The PBI had the high tensile stress exceeded 92 MPa. The mechanical properties of phosphoric acid doped PBI significantly decreased.
    The conductivity of the PBIs was increased with increasing temperature and phosphoric acid doped. The tensile stress of C5-CPBI-BIside-30 containing 342 wt% of phosphoric acid doped was 22 MPa. The proton conductivity at 180oC was 65.8 mS/cm that is higher than the m-PBI (56.8 mS/cm).
    Thus, these C-PBIs have high phosphoric acid doped, high proton conductivity, good thermal stability and good mechanical properties. They are great potential to become a medium temperature fuel cell proton conducting membrane material in the future. 
    Part II
    A series of new polybenzimidazoles (PBIs) with pendant benzothiazole ring had been synthesized. This study improved mechanical properties of proton exchange membranes via crosslinking reaction using methyl pendent. The uncrosslinked PBI showed good solubility in aprotic solvents. They had high inherent viscosities in the range of 0.9~1.47 dLg-1, and they could form tough and flexible films. After crosslinking, the PBI exhibited high thermal stability and their glass transition temperature exceeded 300oC. The PBI had the high tensile stress exceeded 78 MPa. The mechanical properties of phosphoric acid doped PBI significantly decreased.
    The conductivity of the PBIs was increased with increasing temperature and phosphoric acid doped. C5-CPBI-1-10 exhibited high proton conductivity (57.6 mS/cm at 160oC) and the tensile stress (7.9 MPa).
    Thus, some of C-PBIs have high phosphoric acid doped, high proton conductivity, good thermal stability and good mechanical properties. They are great potential to become a medium temperature fuel cell proton conducting membrane material in the future. 

    摘要 I ABSTRACT III 目錄 V Figure索引 IX Table索引 XII 第一章 緒論 1 1.1前言 1 1.2燃料電池介紹 3 1.2.1燃料電池的發展 3 1.2.2燃料電池優缺點 5 1.2.3燃料電池的種類 7 1.2.4燃料電池原理與應用 10 1.3質子交換膜 13 1.4中溫型燃料電池簡介 15 1.4.1中溫型燃料電池的特色 15 1.4.2聚苯咪唑薄膜摻雜磷酸的質子傳導機制 16 1.5 交聯劑介紹 18 1.6 文獻回顧 22 1.7 研究動機 28 1.8研究內容 32 第二章 實驗 33 2.1實驗藥品 33 2.2聚苯咪唑 (Polybenzimidazole) 共聚物實驗程序 35 2.2.1單體合成 36 2.2.2合成交聯聚苯咪唑共聚物 (Crosslinked-PBIs) 37 2.3聚合物之物性與化性分析 41 第三章 Part I含苯並咪唑之聚苯咪唑其性質研究 Crosslinked Polybenzimidazoles Containing Pendent Benzimidazole Groups 47 3.1 C-PBIs合成 48 3.2固有黏度測試 50 3.3溶解度測試 51 3.4交聯反應之證明 52 3.4.1用溶解度來證明交聯反應 52 3.4.2 FT-IR光譜分析 54 3.5熱性質測試 55 3.6磷酸摻雜量的測試 60 3.7磷酸摻雜量對膨潤度的測試 63 3.8質子傳導度分析 64 3.9機械性質量測 68 3.9.1未摻雜磷酸薄膜機械性質量測 68 3.9.2摻雜磷酸薄膜機械性質量測 70 3.9.3 C-PBI機械性質與質子傳導度比較 72 3.10氧化安定性 74 第四章 Part II含苯並噻唑之聚苯咪唑其性質研究 Crosslinked Polybenzimidazoles Containing Pendent Benzothiazole Groups 75 4.1 C-PBIs合成 76 4.2固有黏度測試 78 4.3溶解度測試 79 4.4交聯反應之證明 81 4.4.1 DSC分析與溶解度證明交聯反應 81 4.4.2 FT-IR光譜分析 84 4.5熱性質測試 85 4.6磷酸摻雜量的測試 89 4.7磷酸摻雜量對膨潤度的測試 92 4.8質子傳導度分析 93 4.9機械性質量測 98 4.9.1未摻雜磷酸薄膜機械性質量測 98 4.9.2摻雜磷酸薄膜機械性質量測 100 4.9.3 C-PBI機械性質與質子傳導度比較 102 4.10氧化安定性 103 第五章 結論 104 第六章 參考資料 108

    1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2ndEdition)”, John Wiley & Sons Inc, 2003.
    2. 馬承九,燃料電池(札記),三民書局(2008)。
    3. 溫武義,燃料電池技術,全華科技圖書有限公司(2004)。
    4. 鄭耀宗等著,現場型磷酸燃料應用於大用戶之可行性研究(1995)。
    5. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, M. G. Klett, Fuel Cell Handbook, fifth edition, 2000.
    6. 台灣燃料電池資訊網, http://www.tfci.org.tw
    7. B. Smitha, S. Sridhar, A. A. Khan, J. Membr. Sci., 2005, 259, 10.
    8. C. H. Parka, C. H. Leeb, M. D. Guivera, Y. M. Leea, Prog. Polym. Sci., 2011, 36, 1443.
    9. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, J. Electrochem. Soc., 2003, 150, 1599.
    10.Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, J. Electrochem. Soc., 2004, 151, 8.
    11.台灣Wiki, http://www.twwiki.com/wiki
    12.J. A. Asensio, E. M. Sanchezab, P. G. Romero, Chem. Soc. Rev., 2010, 39, 3210.
    13. X. Li, C. Liu, S. Zhang, G. Yu, X. Jian, J. Membrane Science, 2012, 423, 128
    14. S. Maity, T. Jana, Macromol. 2013, 46, 6814
    15. H. Bai, W. S. W. Ho, J. Tai, Inst. Chem. Eng., 2009, 40, 260.
    16. M. Han, G. Zhang, Z. Liu, S. Wang, M. Li, J. Zhu, H. Li, Y. Zhang, C. M. Lewb, H. Na, J. Mater. Chem., 2011, 21, 2187.
    17. H. Luo, H. Pu, Z. Chang, D. Wan, H. Pan, J. Mater. Chem., 2012, 22, 20696.
    18. G. Wang, Y. Yao, G. Xiao, D. Yan, J. Membr. Sci., 2013, 425, 200.
    19. Q. F. Li, R. H. He, J. O. Jensen, N. J. Bjerrum, Journal of the Electrochemiacl society, 2003, 150, 1599.
    20. 魏安幸,合成新型含苯並咪唑側基之聚苯並咪唑於中溫型燃料電 池之質子傳導膜之性質研究,台灣科技大學化工系(2013)
    21. T. D. Dang, L. S. Tan and F. E. Arnold, Polymer Preprints , 1990, 31(1), 451.
    22. 詹惠婷,開發燃料電池之質子傳導膜及其性質研究,台灣科技大學化工系(2011)
    23. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, J. E. McGrath, J. Membr. Sci., 2002, 197, 231.
    24. H. Pu, Q. Liu, G. Liu, J. Membr. Sci., 2004, 241,169.
    25. J. A. Mader, B. C. Benicewicz, Macromol.2010, 43, 6706

    無法下載圖示 全文公開日期 2019/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE