簡易檢索 / 詳目顯示

研究生: 鄭羽志
Yu-chih Cheng
論文名稱: 迴路式熱管應用於個人電腦之熱傳研究
Looped heat pipe applied on the thermal management of Personal Computer
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 王鵬評
Peng-ping Wang
莊福盛
Fu-sheng Chuang
管衍德
Yen-te Kuan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 146
中文關鍵詞: 風扇燒結毛細結構迴路式熱管
外文關鍵詞: fan, sinter, wick, LHP
相關次數: 點閱:223下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在設計與製造出一具平板蒸發器之迴路式熱管,並將加壓燒結的毛細結構應用在系統上。當系統設計完成後,經由理論原理計算系統管路壓降,再以實驗的方法來研究系統的熱傳特性,其中包括啟動測試、最佳工質填充量、冷凝器性能變化、熱洩漏改良、風扇轉速搭配等參數進行一系列實驗分析,同時針對在低發熱功率時不易啟動穩態的現象作了研究探討。結果如下:
    (1)壓降理論計算結果顯示,最大壓降為重力壓降,其次分別為毛細壓降、液相工質流動壓降、彎管壓降、汽相工質流動壓降。
    (2)工作流體水的注入量在26.5㏄時,高瓦數的散熱表現最佳,但在低瓦數時則不易啟動。
    (3)在相同流量不同靜壓的風扇條件下,低靜壓的風扇在高發熱量的散熱性能較佳;而在相同靜壓不同流量的情形下,高流量風扇對高發熱量負載的效果則比低流量風扇好。
    (4)降轉速、減少工質填充量、加裝補償室散熱裝置,為有效解決低瓦無法穩態問題的方法。
    (5)冷凝器風扇轉速的大小對高發熱量負載的性能影響較大,而補償室風扇轉速的大小對低瓦負載的影響較大,實驗過程當中,最佳熱阻值在發熱量100W時為0.367℃/W。


    This study’s main purposeis to design and fabricate a LHP with the
    flat evaporator and the pressurized, sintered wick. After finishing the
    system’s design, the piping pressure-drop was calculated by applying the
    related theory. Afterwards, a series of the experiments were conducted to
    study the thermal characteristics of LHP. The emphases are focused on
    the start-up test, the optimum amount of working fluid, the various
    condenser performances, improvement on heat-leakage, and the influence
    associated with different fan speeds. In the meantime, the unsteady
    situation under the low heat loading was also discussed extensively in this
    study. The experimental results are listed as follows:
    (1) The theoretical calculations showed that the priorities of the influence
    on the system pressure-drop are the gravity, the wick pressure-drop,
    the liquid pressure-drop, the elbow pressure-drop, and the vapor
    pressure-drop.
    (2) The 26.5 ㏄ amount of working fluid can yield the best thermal
    resistance (0.367 ℃/W) for the LHP under the high-power-dissipation
    (100W) situation. However, a difficulty on start-up is observed under
    this amount of working fluid.
    (3) Under the same flowrate situation, the low-pressure fan results in a
    better heat-dissipating ability. Also, for the same static-pressure
    condition, a larger airflow generates a superior thermal performance.
    (4) Reducing fan speed, decreasing the amount of working fluid, adding
    heatsink on compensation chamber are effective to solve the stating
    problem of the LHP under the low power loading.
    (5) The rotation speed of cooling fan attached on the condenser has a
    strong influence on LHP thermal performance under high power
    loading; nevertheless, the rpm of cooling fan on the compensation
    chamber presents a substantially effect on LHP with a lower-power
    loading.

    中文摘要...........................................................................Ⅰ 英文摘要...........................................................................Ⅱ 致謝..................................................................................Ⅲ 目錄..................................................................................Ⅳ 圖索引...............................................................................Ⅷ 表索引............................................................................. XII 符號索引.........................................................................XIII 第一章 緒論........................................................................1 1.1前言......................................................................1 1.2文獻回顧..............................................................10 1.2.1 迴路式熱管文獻..........................................10 1.2.2燒結文獻....................................................15 1.3研究目的..............................................................17 第二章 LHP操作原理與理論基礎........................................19 2.1操作原理..............................................................19 2.2補償室功能與自動調節特性...................................24 2.3理論基礎..............................................................25 2.3.1迴路壓降分析............................................26 2.3.2工質填充量與熱阻值計算............................36 第三章 LHP元件設計.........................................................37 3.1工作流體的選擇.....................................................37 3.2傳導材質之選擇.....................................................41 3.3毛細結構的選擇.....................................................44 3.4 元件之設計..........................................................47 3.4.1蒸發器........................................................47 3.4.2補償室........................................................48 3.4.3汽液傳輸段..................................................48 3.4.4冷凝器........................................................49 第四章 實驗製作與性能測試...............................................50 4.1實驗製作..............................................................50 4.1.1毛細結構燒結..............................................53 4.1.2LHP元件製作............................................60 4.1.3工質填充系統..............................................68 4.2性能測試..............................................................70 4.2.1測試設備...................................................72 4.2.2熱電偶校正................................................75 4.2.3性能評估方法............................................76 4.2.4測試平台建立............................................77 4.2.5測試步驟...................................................81 4.3實驗參數...............................................................81 第五章 結果與討論............................................................89 5.1環路壓降計算結果................................................89 5.2啟動測試...............................................................93 5.3最佳工質填充量...................................................101 5.4冷凝器性能參數測試...........................................106 5.4.1相同流量.................................................106 5.4.2相同靜壓.................................................110 5.5熱洩漏之改善.....................................................114 5.6低瓦無法穩態之改良...........................................118 5.6.1降低風扇轉速...........................................119 5.6.2補償室加裝散熱裝置.................................122 5.7最佳散熱模組選擇...............................................128 第六章 結論與建議...........................................................135 6.1結論...................................................................135 6.2建議...................................................................138 參考文獻.........................................................................139 附錄................................................................................144 作者簡介.........................................................................146

    【1】http://www.intel.com/
    【2】Maidanik, Y.F. et al, ”Heat Transfer Apparatus”, U.S. Patent No.4515209, May 7, 1985.
    【3】Wolf, D.A. et al, ”Loop Heat Pipes-their Performance and Potential”, SAE Paper941575, 1994.
    【4】Maidanik, Y.F. et al, ”Design and Investigation of Methods of Regulation of Loop Heat Pipes for Terrestrial and Space Applications”, SAE Paper941407, 1994.
    【5】Kadoguchi, K. & Fukano, T. and Emi Y. “Operating Limit of Closed Two-Phase Thermo-siphon With a Binary Mixture,“ The Tenth International Heat Transfer Conference, Vol. 7, pp.449-454, 1994.
    【6】Gernert, N.J. et al, ”Fine Pore Loop Heat Pipe Wick Structure Development”, SAE Paper961319, 1996.
    【7】Kiseev, V.V. et al, ”Development of Two-phase Loops with Capillary Pumps”, SAE Paper972482, 1997.
    【8】Nikitkin, M. and Cullimore B., ”CPL and LHP Technologies:What are the difference? What are the similaritie?”, SAE Paper981587, 1998.
    【9】Gerhart, C. et al, ”Initial Characterization Results of Metal Wick Capillary Pumps”, Space Technology and Applications International Forum pp.938-942, 1999.
    【10】Maidanik, Y.F. and Pastukhov V.G. ”Loop Heat Pipes-Recent Developments Test Results and Applications”, SAE Paper1999-01-2530, 1999.
    【11】Wrenn, et al, ”Effect of Noncondensible Gas and Evaporator Mass On Loop Heat Pipe Performance”, SAE PaperNO.2000-01-2409, pp.603-614, 2000.
    【12】Ku, J. et al, ”Investigation of Low Power Operation In A Loop Heat Pipe”, SAE Paper2001-01-2192, 2001.
    【13】Muraoka, I. et al, “Analysis of the operational characteristics and limits of a loop heat pipe with porous element un the condenser”, International journal of heat and mass transfer 44 pp.2287-2297, 2001.
    【14】Kim, K-S. et al, ” Heat pipe cooling technology for desktop PC CPU”, Applied Thermal Engineering 23 pp.1137-1144, 2003.
    【15】Pastukhov, V.G. et al, “Miniature loop heat pipes for electronics cooling”, Applied Thermal Engineering 23 pp.1125-1135, 2003.
    【16】陳泰宇,“迴路式熱管製造與性能測試”,台灣大學機械工程研究所碩士論文, 2001.
    【17】鄭國章,“具高緻密度毛細結構之迴路式熱管”,台灣大學機械工程研究所碩士論文, 2003.
    【18】詹志彬,“不同工作流體及毛細參數對迴路式熱管之影響”, 台灣科技大學機械工程研究所碩士論文, 2003.
    【19】Maidanik, Y.F. et al, “Review Loop Heat Pipes”, Applied Thermal Engineering 25 pp.635-657, 2004.
    【20】Bagshaw, N. E. et al., “The Properties of Porous Nickel Produced by Pressing and Sintering”, Powder Metallurgy, Vol. 10, No. 19, 1967.
    【21】Tracey, V.A., ”Pressing and Sintering of Nickel Powders”, The International Journal of Powder Metallrygy & Powder Technology, Vol.20, No.4, 1984.
    【22】Reimbrecht, E.G., “Manufacturing and Microstructual Characterization of Sintered Nickel Wicks for Capillary Pumps”, Materials Research Vol.2, 2001.
    【23】王添銘,“迴路式熱管之毛細結構的設計、製造及性能測試”,台灣大學機械工程研究所碩士論文, 2002.
    【24】Maidanik, Y.F. et al, “Loop Heat Pipes Technology”, 太陽能科技與產業發展研討會, 2000.
    【25】Chi. S. W., “Heat Pipe Theory and Practice”, McGraw-Hill, New York, 1976.
    【26】Faghri, A., “Heat Pipe Science and Technology, Taylor and Francis”, Washington, DC, 1995.
    【27】黃坤祥, 粉末冶金學(再版), 中華民國粉末冶金協會, 2003.
    【28】Holman, J. P., “Heat Transfer”, McGraw-Hill, 8th edition, New York, 1997.

    QR CODE