簡易檢索 / 詳目顯示

研究生: 張清齡
Agnes - Cyndy Setyarini
論文名稱: 煉油蒸餾系統之設計與控制
Design and Control of Petroleum Distillation Columns
指導教授: 周宜雄
Yi-Shyong Chou
口試委員: 錢義隆
I-Lung Chien
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 122
中文關鍵詞: 設計與控制煉油蒸餾系統
外文關鍵詞: Design and Control, Petroleum Distillation
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石油煉油廠是一個工業過程工廠,成為一個重要的產品,如汽油,取暖油,噴氣燃料,瀝青,蠟,大量原油加工和提煉等石油煉油廠有單位,單獨(蒸餾)和交談(各種反應),這些混合物。蒸餾是在煉油分離過程中最常見的。本研究著重於穩定狀態的設計,蒸餾部分的關注,列所有數據(預閃,pipestill和真空蒸餾塔)艾斯本技術手冊入門建模石油進程的一個例子。前兩個蒸餾單位使用沸點控制策略從Luyben(2006)作為基礎的情況下適應的動態研究。據Luyben(2006),特別是在預閃列研究,輕石腦油流量+20%的吞吐量干擾下的動態響應沒有像其他產品的流量增加20%左右。輕石腦油的20%的流量增加20%的吞吐量干擾,作為本研究的第一動機。也在Luyben(2006)提出的沸點控制策略是不實際的和昂貴的。更換所有沸點使用推理紙盤溫度控制策略的控制策略,是本研究的第二個動機。的反應表明,推理控制策略比沸點控制策略具有更快的動態響應。產品質量差,可以消除在原油交換機和財產吞吐量的變化,調整托盤溫度設定值。


Petroleum refinery is an industrial process plant where crude oil is processed and refined into a large number of important products, such as gasoline, heating oil, jet fuel, asphalt, and wax, etc. Petroleum refineries have units that separate (by distillation) and converse (by a variety of reactions) these mixtures. Distillation is the most common separation process in refining. This study focuses on steady-state design that concern on distillation part where all of the column (preflash, pipestill and vacuum distillation column) data are taken as an example from Aspen Technology manual Getting Started Modelling Petroleum Processes. The dynamic study of the first two distillation units using boiling point control strategy adapted from Luyben (2006) as a base case. According to Luyben (2006), especially in the preflash column study, the dynamic response for light naphtha flowrate under +20% throughput disturbance was not increased about 20% like other product flowrates. For that, increasing 20% flowrates of Light Naphtha at +20% throughput disturbance is done as the first motivation of this study. Also boiling point control strategy presented in Luyben (2006) is not practical and expensive. Replacing all boiling point control strategy using inferential tray temperature control strategy is the second motivation of this study. The responses show that the inferential control strategy has faster dynamic response than the boiling point control strategy. The deviation of the product quality can be eliminated during crude switches and throughput changes by property adjusting the tray temperature setpoints.

TABLE OF CONTENTS ABSTRACT ………………………………………….………………..………i ACKNOWLEDGEMENTS .…………………………………………..……...ii TABLE OF CONTENTS ……………………………………………….…....iii LIST OF FIGURES …………………………………………………………..vi LIST OF TABLES ……………………………………………………….........x Chapter 1 INTRODUCTION 1.1 Background ………………………………………………………………….…..1 1.2 Overall Petroleum Process ………………………………………………………2 1.2.1 Physical separation Processes …………………….………………..……..2 1.2.2 Chemical Catalytic Conversion Processes.……….………………..……..3 1.2.3 Thermal Chemical Conversion Processes …………………….……….....5 1.3 Refinery Feedstocks ……………………………………………………………..7 1.3.1 Saturated Hydrocarbons ………………...…………………….……….....8 1.3.2 Unsaturated Hydrocarbons ……………...…………………….……….....9 1.3.3 Aromatic Hydrocarbons ………………...…………………….……….....9 1.4 Physical Properties and Characterization Data…………………………………11 1.4.1 True Boiling Point (TBP) …..………...……..……………….………...12 1.4.2 American Society for Testing and Materials (ASTM) D86 …….……..13 1.4.3 ASTM D158 ……..….………………...…………………….………....15 1.4.4 American Petroleum Institute (oAPI) ...…....……………….…...……...15 1.4.5 Reid Vapor Pressure (RVP) ...……...………………..……….………...15 1.4.6 Flashpoint …….………………...……………..………….………........16 1.4.7 Octane number ...……...…………..…………….……………..…….....16 1.4.8 Cetane number ……….………………...….…………….…..……........16 1.4.9 Pour Point ………………..…………...……………………...………...17 1.4.10 Viscosity ...………….…………...…………………….……….…........17 1.4.11 Freezing Point …….…..………...…………………….……….…........17 1.4.12 Aniline Point ……….…………...…………………….……….…........17 1.4.13 Smoke Point ….…….…………...…………………….……….…........17 1.4.14 Cloud Point ….…….…………...…………………….………..…........18 1.5 Refinery Products ……………………………………………………………...18 1.5.1 Liqueified Petroleum Gas (LPG) ……...…………………….………....18 1.5.2 Naphtha ……………………………......…....……………….…...….....18 1.5.3 Gasoline ………………….....……...………………..……….………...19 1.5.4 Kerosene …….………………...………………………….………........19 1.5.5 Jet Fuel ………...……...…………..…………….……………..…….....20 1.5.6 Diesel Fuel …..……….………………...….…………….…..……........20 1.5.7 Fuel Oil ………………..…………...………………………...………...20 1.5.8 Residual Fuel Oil …...…………...…………………….……….…........20 1.5.9 Lube Oil (Lubricants) ..………………...….…………….…..……........21 1.5.10 Ashpalt …………......…………...…………………….……….…........21 1.5.11 Petroleum Coke .........…………...…………………….……….…........21 1.6 Literature Survey ………………………………………………………...…….21 1.7 Motivation of this work ……………………………………………………..…26 1.8 Organization of this thesis ……………………………………………………..26 Chapter 2 INFORMATION NEEDED IN THE PROCESS SIMULATION AND ANALYSIS 2.1 General Information about PetroFrac...…………………..……………………..27 2.2 Crude Oil Assay Data……………………………..…………………………….31 2.3 Generating Assay Data in ASPEN Plus ……...…………………………………32 Chapter 3 STEADY STATE DESIGN OF PETROLEUM DISTILLATION COLUMNS 3.1 Proposed Design of Preflash Column ………………...……………………....45 3.2 Proposed Design of Pipestill Column ………………...……………………....48 3.3 Proposed Design of Vacuum Column ………………...……………………….56 Chapter 4 CONTROL OF PETROLEUM DISTILLATION COLUMNS 4.1 Overall control strategy development ………………………………………....62 4.2 Boiling Point Control Strategy (Base Case) …………………………………...63 4.2.1 Preflash Column .…….…………………………………………...….63 4.2.2 Pipestill Column .……….…………………………………………....73 4.2.3 Vacuum Column ……….………...………………………………..…76 4.3 Inferential Control Strategy …..……………...…………………………...……79 4.4 Dynamic results …..……………..……………...……………………………..83 Chapter 5 CONCLUSION ……………..……………...……………………………104 Reference .................................................................................................................105 Appendix ...................................................................................................................107

1. Ansari, R.M.; Al-Otaibi, Jalal A. An Innovative Approach to Inferential Modeling on Crude Distillation Unit. Saudi Aramco Journal of Technology Summer 2007, 26-30.
2. Aspen Technology, Inc. Getting Started Modeling Petroleum Processes; Aspen Technology, Inc.: Burlington, MA, 2009.
3. Bhartiya, Sharad; Whiteley, James R. Development of inferential measurements using neural networks. ISA Transactions 2001, 40, 307-323.
4. Chang, S.H.; Robinson, Paul R. Practical Advances in Petroleum Processing, vol. 1; Springer: USA, 2006.
5. EPA United States Environmental Protection Agency. Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from The Petroleum Refining Industry. October 2010.
6. Errico, Massimiliano; Tola, Giuseppe; Mascia, Michele. Energy Saving In A Crude Distillation Unit By A Preflash Implementation. Applied Thermal Engineering 2009, 29, 1642-1647.
7. Fahim, Mohamed A.; Al-Sahhaf, Taher; Elkilani, Amal. Fundamentals of Petroleum Refining, 1st ed.; Elsevier: Oxford, United Kingdom, 2010.
8. Gary, J.H.; Handwerk, G.E. Petroleum Refining Technology and Economics, 4th ed.; Marcel Dekker: New York, 2001.
9. Haydary, Juma; Pavlik, Tomas. Steady-state and Dynamic Simulation of Crude Oil Distillation Using Aspen Plus and Aspen Dynamics. Petroleum & Coal Journal 2009, 51, 100-109.
10. Jones, David S. J.; Pujado, Peter R. Handbook of Petroleum Processing; Springer: Netherlands, 2006.
11. Kaes, G.L. Refinery Process Modeling, 1st ed.; Kaes Enterprises, Inc.: Colbert, Georgia, 2000.
12. Luyben, William L. Distillation Design and Control Using Aspentm Simulation; John Wiley & Sons, Inc.: New York, 2006; Chapter 11.
13. Luyben, W. L. Design of a Petroleum Preflash Column. Energy Fuels 2012, 26, 1268-1274.
14. Parkash, Surinder. Refining Processes Handbook; Elsevier: Oxford, United Kingdom, 2003.
15. Stojić, Milana M.; Lj., Svetlana; Nedeljkov, Krstić; Darko M.; Mauhar, Siniša. Simulation of Atmospheric Crude Unit "Badger" using Aspen Plus. Petroleum & Coal Journal 2004, 46 (2), 57-62.

無法下載圖示 全文公開日期 2017/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE