簡易檢索 / 詳目顯示

研究生: 黃資元
Tzu-Yuan Huang
論文名稱: 不同煤炭燃料於化學迴路產氫製程之模擬與分析研究
Simulation and Analysis of Chemical Looping Processes to Produce Hydrogen with Various Coal-Fuel Sources
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 曾堯宣
Yao-Hsuan Tseng
吳煒
Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 179
中文關鍵詞: 煤炭燃料化學迴路程序模擬合成氣產氫
外文關鍵詞: coal-fuel, chemical looping, process simulation, syngas, hydrogen production
相關次數: 點閱:205下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究以Illinois NO.6煤炭為出發點,參考Zeng et al. (2012)之1000MWth系統。在現今載氧體動力式缺乏情形下,利用Aspen Plus? 之R-Gibbs反應器模組以吉布士最小自由能(Gibbs minimum free energy)方式計算化學迴路(Chemical looping)之相關產物。與流體化床反應器相比,在相同滯留時間情形下,逆流式移動床反應器(Moving-Bed reactor)具有較佳之氣-固反應效果。
  本研究改變三種不同煤炭進料,依含碳量由高至低分別為:Pocahontas No.3 (86.15 wt%)、Illinois No.6 (63.75 wt%) 及Powder River Basin (PRB , 50.23 wt%)。針對直接煤炭化學迴路(Coal-direct chemical looping, CDCL)程序探討三個反應器間之熱平衡情況與熱平衡狀態下的最適化條件。
  其結果顯示,在系統熱平衡情形下,產氫量與含碳量成正比關係;而空氣反應器出料之固體溫度與含碳量成反比關係。為防止空氣反應器出料之固體溫度過高產生燒結現象,本研究透過提升金屬載氧體在系統中的循環量使其溫度下降。此種操作,雖會導致產氫量些微下降,但可有效降低空氣反應器固體出料之溫度,且維持系統熱平衡,使未來改變不同煤炭燃料下仍可達成產氫及部分產電之運作。


  By following Zeng et al. (2012)’s work, the process of CDCL is simulated by Aspen Plus® with R-Gibbs module for the fuel reactor, air reactor, and hydrogen generator. And the type of moving-bed reactor is also selected in this paper.
  The objective of this paper is to observe the effects of syngas conversion, operating temperature and pressure in fuel reactor. And also, the maximum hydrogen production rate is investigated under three kinds of coal, Pocahontas No.3 (86.15 wt%), Illinois No.6 (63.75 wt%), and Powder River Basin (PRB , 50.23 wt%). The results are shown that hydrogen production rate is proportional to the carbon content in each kind of coal. However, the phenomenon of the oxygen-carrier temperature at the top of air reactor is reverse proportionally to the carbon content. Finally, the optimal amount of oxygen-carrier and the operating condition of this CDCL process can be found in this work.

致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.1.1 燃燒後捕獲 3 1.1.2 燃燒前捕獲 3 1.1.3 富氧燃燒捕獲 3 1.2 化學迴路燃燒程序 4 1.3 研究動機與目的 6 1.4 組織章節 7 第二章 化學迴路燃燒程序 8 2.1 前言 8 2.1.1 化學迴路燃燒系統 9 2.1.2 化學迴路產氫程序 11 2.2 載氧體 15 2.3 反應器系統 19 2.3.1 流體化床系統20 2.3.2 移動床系統 21 2.4 燃料燃燒方式 23 2.4.1 合成氣燃料 24 2.4.2 固體燃料燃燒 26 第三章 熱力學與化學迴路系統建模 30 3.1 前言 30 3.2 元素建立 31 3.3 熱力學模式 32 3.4 程序流程圖 34 3.5 反應器建模與驗證 40 3.5.1 燃料反應器 ─ 流體化床 v.s 移動床 40 3.5.2 燃料反應器 ─ 燃料轉化 41 3.5.3 燃料反應器 ─ 操作溫壓 43 3.5.4 產氫反應器 ─ Fe氧化趨勢 44 3.5.5 Illinois NO.6煤炭1000 MWth整廠結果 46 3.5.6 整廠系統評估 49 第四章 合成氣化學迴路系統 51 4.1 前言 51 4.2 氣化複循環發電與二氧化碳捕獲系統 52 4.3 SCL概念性設計說明 54 4.3.1 氣化區段 56 4.3.2 合成氣水淬及脫硫系統 57 4.3.3 化學迴路程序 ─ 燃料反應器 58 4.3.4 化學迴路程序 ─ 產氫反應器 58 4.3.5 化學迴路程序 ─ 空氣反應器 59 4.4 氣化區段 59 4.4.1 煤炭轉化趨勢分析 62 4.4.2 模擬結果 65 4.5 合成氣水淬及脫硫系統 66 4.5.1 模擬結果 67 4.6 化學迴路系統 ─ 燃料反應器 68 4.6.1 燃料氣體轉化 69 4.6.2 模擬結果 70 4.7 化學迴路系統 ─ 產氫反應器與空氣反應器 73 4.7.1 產氫反應器 ─ 產氫極大化 73 4.7.2 空氣反應器 ─ 產氫極大化之最小空氣量模擬結果 76 4.7.3 系統熱平衡極限分析 79 4.8 熱整合分析與總效率計算 82 第五章 直接煤炭化學迴路程序 89 5.1 前言 89 5.2 概念性設計流程說明 89 5.2.1 燃料反應器 90 5.2.2 產氫反應器 91 5.2.3 空氣反應器 91 5.3 模擬步驟 93 5.4 載氧體分流系統 94 5.4.1 設計概念 94 5.4.2 燃料反應器 ─ 模擬設定與結果 97 5.4.3 載氧體未分流 ─ 最大產氫分析 100 5.4.4 載氧體分流變化分析 104 5.4.5 載氧體循環量分析 108 5.4.6 產電、產氫及總效率 111 5.5 載氧體部分氧化系統 118 5.5.1 設計概念118 5.5.2 產氫反應器 & 空氣反應器 ─ 熱平衡結果 120 5.5.3 載氧體循環量分析 122  5.5.4 產電、產氫及總效率 126 5.6 煤炭預乾燥系統 131 5.6.1 設計概念 131 5.6.2 煤炭預乾燥區段 ─ 模擬設定與結果 136 5.6.3 燃料反應器 ─ 模擬設定與結果 139 5.6.4 產氫反應器 & 空氣反應器 ─ 模擬設定與結果 142 5.6.5 載氧體循環量分析 143 5.6.6 產電、產氫及總效率 145 5.7 SCL與CDCL最適化總比較 149 5.7.1 設計架構評估與分析 150 結論 152 Reference 153

1. Abad, A. ; Adánez, J. ; Garcia-Libiano, F. ; de Diego, L. F. ; Gayán, P. ; Celaya, J. “Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical-looping Combustion,” Chem. Eng. Sci., Vol. 62, pp. 533–549 (2007)
2. Adánez, J. ; de Diego, L. F. ; Garcia-Libiano, F. ; Gayán, P. ; Abad, A. “Selection of Oxygen Carriers for Chemical-looping Combustion,” Energy Fuels, Vol. 18, pp. 371–377 (2004)
3. Adánez, J. ; Gayán, P. ; Celaya, J. ; de Diego, L. F. ; Garcia-Libiano, F. ; Abad, A. “Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion,” Ind. Eng. Chem. Res., Vol. 45, pp. 6075–6080 (2006)
4. Adánez, J. ; Cuadrat, A. ; Abad, A. ; Gayán, P. ; de Diego, L. F. ; Garcia-Labiano, F. “Ilmenite Activation during Consecutive Redox Cycles in Chemical-looping Combustion,” Energy Fuels, Vol. 24, pp. 1402–1413 (2010)
5. Adánez, J. ; Abad, A. ; Garcia-Labiano, F. ; Gayán, P. ; de Deigo, L. F. “Progress in Chemical-Looing Combustion and Reforming Technologies,” Prog. Energy Combust. Sci., Vol 38, pp. 215–282 (2012)
6. Amelio, M. ; Morrone, P. ; Gallucci, F. ; Basile, A. “Integrated Gasification Gas Combined Cycle Plant with Membrane Reactors: Technological and Economical Analysis,” Energy Convers. Manage., Vol. 48, pp. 2680–2693 (2007)
7. Andrus, H. E. ; Chiu, J. H. ; Thibeault, P. R. “Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype,” 1st International Conference on Chemical Looping, Lyon, France (2010)
8. Anheden, M. ; Svedberg, G. “Exergy Analysis of Chemical-Looping Combustion Systems,” Energy Convers. Manage., Vol. 39, pp. 1967–1980 (1998)
9. Aresta, M. ; Dibenedetto, A. “Utilisation of CO2 as a Chemical Feedstock: Opportunities and Challenges,” Dalton Trans., pp. 2975–2992 (2007)

10. Azis, M. M. ; Jerndal, E. ; Leion, H. ; Mattisson, T. ; Lyngfelt, A. “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical Looping Combustion (CLC),” Chem. Eng. Res. Des., Vol. 88 (11), pp. 1505–1514 (2010)
11. Beal, C. ; Epple, B. ; Lyngfelt, A. ; Adánez, J. ; Larring, Y. ; Guillemont, A. ; Anheden, M. “Development of Metal Oxides Chemical Looping Process for Coal-fired Power Plants,” 1st International Conference on Chemical Looping, Lyon, France (2010)
12. Berguerand, N. ; Lyngfelt, A. “The Use of Petroleum Coke as Fuel in a 10 kWth Chemical-looping Combustor,” Int. J. Greenhouse Gas Control, Vol. 2, pp. 169–179 (2008)
13. Berguerand, N. ; Lyngfelt, A. “Chemical Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit High Temperature Operation,” Energy fuels, Vol. 23, pp. 5257–5268 (2009)
14. Bhattacharyya, D. ; Turton, R. ; Zitney, S. E. “Steady-state Simulation and Optimization of Integrated Combined Cycle Power Plant with CO2 capture,” Ind. Eng. Chem. Res., Vol 50, pp. 1674 (2011)
15. Bos, A. N. R. ; Borman, P.C. ; Kuczynski, M. ; Westerterp, K. R. “The Kinetics of the Methanol Synthesis on a Copper Catalyst: an Experimental Study,” Chem. Eng. Sci., Vol. 44, pp. 2435–2449 (1989)
16. Cao, Y. ; Pan, W. P. “Investigation of Chemical Looping Combustion by Solid Fuels 1. Process Analysis,” Energy Fuels, Vol. 20, pp. 1836–1844 (2006)
17. Carapellucci, R. ; Milazzo, A. “Membarane systems for CO2 Capture and their Integration with Gas Turbine Plants,” Journal of Power and Energy, Vol 217, pp. 505–517 (2003)
18. Chiu, P. C. ; Ku, Y. “Chemical Looping Process-A Novel Technology for Inherent CO2 Capture,” Aerosol Air Qual. Res., Vol 12, pp. 1421–1432 (2012)
19. Chiu, P.C. ; Ku, Y. ; Wu, Y. L. ; Wu, H. C. ; Tseng, Y. H. ; Kuo, Y. L. “Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol Air Qual. Res., Vol. 14, pp. 981–990 (2014).
20. Cho, P. ; Mattisson, T. ; Lyngfelt, A. “Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-looping Combustion,” Ind. Eng. Chem. Res., Vol. 44, pp. 668–676 (2005)
21. Cuadrat, A. ; Abad, A. ; Garcia-Labiano, F. ; Gayán, P. ; de Diego, L. F. ; Adánez, J. “Ilmenite as Oxygen Carrier in a Chemical Looping Combustion System with Coal,” Energy Procedia, Vol. 4, pp. 362–369 (2011)
22. De Diego, L. F. ; Garcia-Libiano, F. ; Gayán, P. ; Celaya, J. ; Palacios, J. M. ; Adánez, J. “Operation of a 10 kWth Chemical-looping Combustor during 200h with a CuO-Al2O3 Oxygen Carrier,” Fuel, Vol. 86, pp. 1036–1045 (2007)
23. Eyring, E. M. ; Konya, G. ; Lighty, J. S. ; Sahir, A. H. ; Sarofim, A. F. ; Whitty, K. “Chemical Looping with Copper Oxide as Carrier and Coal as Fuel,” Oil Gas Sci. Technol., Vol. 66, pp. 209–221 (2011)
24. Fan, L.S. ; Gupta, P. ; Velazquez-Vargas, L.G. ; Li, F. “System and Methods of Converting Fuel,” U.S. Patent US 2009/000194 A1 (2009)
25. Fan, L. S. “Chemical looping systems for Fossil Energy Conservations,” John-Wiley and sons, New Jersey, Inc., U.S. (2010)
26. Forero, C. R. ; Gayán, P. ; de Diego, L. F. ; Garcia-Labiano F. ; Adánez, J. “Syngas Combustion in a 500Wth Chemical-looping Combustion System Using an Impregnated Cu-based Oxygen Carrier,” Fuel Process Technol., Vol. 90, pp. 1471–1479 (2009)
27. Gao, Z. ; Shen, L. ; Xiao, J. ; Qing, C. ; Song, Q. “Use of Coal as Fuel for Chemical-looping Combustion with Ni-based oxygen Carrier,” Ind. Eng. Chem. Res., Vol. 47, pp. 9279–9287 (2008)
28. Gupta, P. ; Velazquez-Vargas, G. ; Fan, L. S. “Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas,” Energy Fuels, Vol. 21, pp. 2900–2908 (2007)
29. Hossain, M. M. ; de Lasa, H. I. “Chemical-looping Combustion (CLC) for Inherent CO2 Separations-A Review,” Chem. Eng. Sci., Vol. 63, pp. 4433–4451 (2008)
30. Hurst, S. “Production of Hydrogen by the Steam-iron Method,” J. Am. Oil Chem. Soc., Vol 16 (2), pp. 29–35 (1939)
31. Ishida, M. ; Jin, H. ; Okamoto, T. “A Fundamental Study of A New Kind of Medium Material for Chemical-looping Combustion,” Energy Fuels, Vol. 10, pp. 958–963 (1996a)
32. Ishida, M. ; Jin, H. “Novel Chemical-Looping Combustor without NOx Formation,” Industiral Engineering Chemistry Research, Vol 35, pp. 2469–2472 (1996b)

33. Ishida, M. ; Takeshita, K. ; Susuki, K. ; Ohba, T. “Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical Loop Combustor,” Energy Fuels, Vol 19, pp. 2514–2518 (2005)
34. Jin, H. ; Ishida, M. “Reactivity Study on A Novel Hydrogen Fueled Chemical-looping Combustion,” Int. J. Hydrogen Energy, Vol 26, pp. 889–894 (2001)
35. Jin, H. ; Ishida, M. “Reactivity Study on Natural-gas-fueled Chemical-looping Combustion by a Fixed Bed Reactor,” Ind. Eng. Chem. Res., Vol. 41, pp. 4004–4007 (2002)
36. Johansson, M. ; Mattisson, T. ; Lyagfelt, A. “Investigation of Fe2O3 with MgAl2O4 for Chemical Looping Combustion,” Ind. Eng. Chem. Res., Vol. 43, pp. 6978–6987 (2004)
37. Johansson, M. ; Mattisson, T. ; Lyngfelt, A. ; Thurman, H. “Combustion of Syngas and Natural Gas in a 300 W Chemical Looping Combustor,” Chem. Eng. Res. Des., Vol. 84 (A9), pp. 819–827 (2006a)
38. Johansson, M. ; Mattisson, T. ; Lyagfelt, A. “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-looping Combustor,” Ind. Eng. Chem. Res., Vol. 45, pp. 5911–5919 (2006b)
39. Kolbitsch, P. ; Bolhar-Nordenkampf, J. ; Pröll, T. ; Hofbauer, H. “Comparison of Two Ni-based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Ind. Eng. Chem. Res., Vol. 48, pp. 5542–5547 (2009a)
40. Kolbitsch, P. ; Pröll, T. ; Bolhar-Nordenkampf, J. ; Hofbauer, H. “Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit,” Energy Procedia, Vol. 1, pp. 1465–1462 (2009b)
41. Ku, Y. ; Wu, H. C. ; Chiu, P. C. ; Tseng, Y. H. ; Kuo, Y. L. “Methane Combustion by Moving Bed Fuel Reactor with Fe-based Oxygen Carrier,” Appl. Energy, Vol. 113, pp. 1909–1915 (2014)
42. Leion, H. ; Mattisson, T. ; Lyngfelt, A. “The Use of Petroleum Coke as Fuel in Chemical-looping Combustion,” Fuel, Vol. 86, pp. 1947–1958 (2007)
43. Leion, H. ; Mattisson, T. ; Lyngfelt, A. “Solid Fuels in Chemical-looping Combustion,” Int. J. Greenhouse Gas Control, Vol. 2, pp. 180–193 (2008)

44. Leion H. ; Jerndal, E. ; Steenari, B. ; Hermansson, S. ; Israelsson, M. ; Jansson, E. ; Johnsson, M. ; Thunberg, R. ; Vadenbo, A. ; Mattisson, T. ; Lyngfelt, A. “Solid Fuels in Chemical-looping Combustion Using Oxide Scale and Unprocessed Iron Ore as Oxygen Carriers,” Fuel, Vol. 88, pp. 1945–1954 (2009)
45. Lewis, W. K. ; Gilliland, E. R. “Production of Pure Carbon Dioxide,” U.S. Patent, 2,665,972 (1954)
46. Li, F. ; Fan, L. S. “Clean Coal Conversion Process,” Energy Environ. Sci., Vol 1, pp. 248–267 (2008)
47. Li, F. ; Kim, H. R. ; Sridhar, D. ; Wang, F. ; Zeng, L. ; Chen, J. ; Fan, L. S. “Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance,” Energy Fuels, Vol. 23, pp. 4182–4189 (2009)
48. Li, F. ; Zeng, L. ; Fan, L. S. “Biomass Direct Chemical Looping Process: Process Simulation,” Fuel, Vol. 89, pp. 3773–3784 (2010a)
49. Li, F. ; Zeng, L. ; Velazquez-Vargas, L. G. ; Yoscovits, Z. ; Fan, L. S. “Syngas Chemical Looping Gasification Process: Bench-Scale Studies and Reactor Simulations,” AIChE J., Vol. 56 (8), pp. 2186–2199 (2010b)
50. Lin, P. H. “Preparation of Al2O3 and TiO2 Supported Fe2O3 Pellets for Chemical Looping Combustion and Hydrogen Generation,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2012)
51. Linderholm, C. ; Abad, A. ; Mattisson, T. ; Lyngfelt, A. “160 h of Chemical-looping Combustion in a 10 kW Reactor System with a NiO-based Oxygen Carrier,” Int. J. Greenhouse Gas Control, Vol. 2, pp. 520–530 (2008)
52. Linderholm, C. ; Mattisson, T. ;Lyngfelt, A. “Long-term Integrity Testing of Spray-dried Particles in a 10-kW Chemical-looping Combustor Using Natural Gas as Fuel,” Fuel, Vol. 88, pp. 2083–2096 (2009)
53. Liu, K. ; Song, C. ; Subramani, V. “Hydrogen and Syngas Production and Purification Technologies,” John-Wiley and sons, New Jersey, Inc., U.S. (2010)
54. Liu, Y. C. “Application of the Fe2TiO5 as Oxygen Carriers for Chemical Looping Prcoess Using the Syngas as a Fuel,” Master Thesis in Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan (2011)
55. Lyngfelt, A. ; Leckner, B. ; Mattisson, T. “A Fluidized-bed Combustion Process with Inherent CO2 Separation; Application of Chemical-looping Combustion,” Chem. Eng. Sci., Vol 56, pp. 3101–3113 (2001)
56. Lyngfelt, A. “Oxygen Carriers for Chemical Looping Combustion-4000 h of Operational Experience,” Oil and Gas Science and Technology, Vol. 66 (2), pp. 161–172 (2011)
57. Mattisson, T. ; Jardnas, A. ; Lyngfelt, A. “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-looping Combustion,” Energy Fuels, Vol. 17, pp. 643–651 (2003)
58. Mattisson, T. ; Johansson, M. ; Lyngfelt, A. “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-looping Combustion,” Energy Fuels, Vol. 18, pp. 628–637 (2004)
59. Mattisson, T. ; Garcia-Labiano, F. ; Kronberger, B. ; Lyngfelt, A. ; Adanze, J. ; Hofbauer, H. “Chemical Looping Combustion Using Syngas as Fuel,” Int. J. Greenhouse Gas Control, Vol. 1, pp. 158–169 (2007)
60. Notz, R. ; Tönnies, I. ; McCann, N. ; Scheffknecht, G. ; Hasse, H. “CO2 Capture for Fossil Fuel-fired Power Plants,” Chem. Eng. Technol., Vol 34, pp. 163–172 (2011)
61. National Energy Technology Laboratory, “Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity,” www.netl.doe.gov. (2010)
62. Pröll, T. ; Kolbitsch, P. ; Bolhar-Nordenkampf, J. ; Hofbauer, H. “A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes,” AIChE J., Vol. 55 (12), pp. 3255–3266 (2009a)
63. Pröll, T. ; Mayer, K. ; Bolhar-Nordenkampf, J. ; Kolbitsch, P. ; Mattisson, T. ; Lyngfelt, A. ; Hofbauer, H. “Natural Mineral as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System,” Energy Procedia, Vol. 1, pp. 27–34 (2009b)
64. Razali, N. A. M. ; Lee, K. T. ; Bhatia, S. ; Mohamed, A. R. “Heterogeneous Catalysts for Production of Chemicals Using Carbon Dioxide as Raw Material: A Review,” Renew. Sust. Energy Rev., Vol. 16, pp. 4951–4964 (2012)
65. Richter, H. J. ; Knoche, K. F. “Reversibility of Combustion Process, Efficiency and Costing, Second Law Analysis of Processes,” ACS Symposium Series. pp. 71–85 (1983)
66. Robinson, P. J. ; Luyben, W. L. “Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/stripping, Water-Gas Shift Reactors, and CO2 Absorption/Stripping,” Ind. Eng. Chem. Res., Vol 49, pp. 4766, (2010)
67. Ryu. H. J. ; Jo, S. H. ; Park, Y. ; Bae, D. H. ; Kim, S. “Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels,” 1st International Conference on Chemical Looping, Lyon, France (2010)
68. Shen, L. ; Wu, J. ; Xiao, J. ; Gao, Z. ; Xiao, J. “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combust. Flame, Vol. 156, pp. 1377–1385 (2009a)
69. Shen, L. ; Wu, J. ; Xiao, J. ; Song, Q. ; Xiao, R. “Chemical Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier,” Energy Fuels, Vol. 23, pp. 2948–2505 (2009b)
70. Son, S. R. ; Kim, S. D. “Chemical Looping Combustion with NiO and Fe2O3 in a Thermobalance and Circulating Fluidized Bed Reactor with Double Loops,” Ind. Eng. Chem. Res., Vol. 45, pp. 2689–2696 (2006)
71. Sridhar, D. ; Tong, A. ; Kim, H. ; Zeng, L. ; Li, F. ; Fan, L. S. “Syngas Chemical Looping Process: Design and Construction of a 25 kWth Subpilot Unit,” Energy Fuels, Vol 26, pp. 2292–2302 (2012)
72. Tong, A. ; Bayham, S. ; Kathe, M. V. ; Zeng, L. ; Luo, S. ; Fan, L. S. “Iron-based Syngas Chemical Looping Process and Coal-direct Chemical Looping Process Development at Ohio State University,” 2nd International Conference on Chemical Looping, Darmstadt, Germany (2012)
73. Tsatsaronis, G. ; Lin, L. ; Tawfik, T. ; Gallaspy, D. T. “Exergoeconomic Evaluation of a KRW-based IGCC Power Plant,” J. Eng. Gas Turb. Power, Vol. 116 (2), pp. 300–306 (1994)
74. Xiang, W. ; Wang, S. “Investigation of Gasification Chemical Looping Combustion Combined Cycle Performance,” Energy Fuels, Vol 22, pp. 961–966 (2008)
75. Xiao, R. ; Chen, L. ; Saha, C. ; Zhang, S. ; Bhattacharya, S. “Pressurized Chemical-looping Combustion of Coal Using an Iron Ore as Oxygen Carrier in a Pilot-scale Unit,” Int. J. Greenhouse Gas Control, Vol. 10, pp. 363–373 (2012)
76. Zafar, Q. ; Mattisson, T. ; Gevert, B. “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as a Support,” Ind. Eng. Chem. Res., Vol. 44, pp. 3485–3496 (2005)
77. Zafar, Q. ; Mattisson, T. ; Gevert, B. “Redox Investigation of Some Oxides of Transition-state Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy Fuels, Vol. 20, pp. 34–44 (2006)
78. Zeng, L. ; He, F. ; Li, F. X. ; Fan, L. S. “Coal-Direct Chemical Looping Gasification for Hydrogen Production:Reactor Modeling and Process Simulation,” Energy Fuels, Vol. 26, pp. 3680–3690 (2012)
79. Aspen Plus, “Getting started modeling processes with solids,” AspenTech: Cambridge, MA, (2006)
80. International Energy Agency (IEA) “Key world energy statistics,” (2010)
81. International Energy Agency (IEA) “Key World Energy Statistics,” (2012)
82. International Energy Agency (IEA) “Key world energy statistics,” (2014)
83. National Energy Technology Laboratory, “Detailed Coal Specifications,” (2012)
84. 徐恆文,煤炭氣化發電之能源優勢,能源資訊網 (2004)
85. 邱炳嶔,Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究 (2014)
86. 李偉丞,不同攜帶介質對合成氣產製程序的影響與能源效益評估 (2014)
87. 經濟部能源局,我國燃料燃燒二氧化碳排放統計 (2013)

無法下載圖示 全文公開日期 2020/08/13 (校內網路)
全文公開日期 2025/08/13 (校外網路)
全文公開日期 2025/08/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE