簡易檢索 / 詳目顯示

研究生: 李姿葶
Zih-Ting Lee
論文名稱: 以氮類分子自組裝薄膜應用於擴散阻擋層探討薄膜堆積密度與衰減長度關係之研究
Packing Density versus Attenuation Length – Nitrogen Based Self-Assembled Thin Film as Barrier Layer on Copper
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陶雨臺
何郡軒
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 氮類分子自組裝薄膜衰減長度
外文關鍵詞: Nitrogen-based molecules, Self-assembled thin film, Attenuation length
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

積體電路尺度微縮的情況下,銅導線的寬度也成為技術突破的一大挑戰,其中降低擴散阻擋層厚度至分子尺度將會有很大的幫助。為達到分子級尺度的擴散阻擋層並且符合無毒性元素的材料條件下,本論文選用三種不同結構的氮元素基團分子並以自組裝技術成長多層膜於銅基材表面,分子結構分別為鏈狀骨幹型、環狀骨幹型及平躺型結構,欲取代現今以TaN/TiN作為的擴散阻擋層。在高溫製程條件下,不同結構之氮類分子所形成的薄膜堆積密度將會影響擴散阻擋能力,因此以熱處理的方式分析薄膜堆積密度的變化,發現相同分子含量的條件下,經過高溫處理後堆積密度會改變,且平躺型結構的氮類分子在高溫處理後可具備更佳的擴散阻擋層特性,因此氮類分子自組裝薄膜可選用為單分子尺度級的擴散阻擋層材料。除此之外,本研究利用薄膜堆積密度探討X-ray所激發出的光電子之衰減長度(Attenuation length;AL),發現衰減長度的變化可以用來初步判斷超薄膜的相對堆積密度。


With the scale of integrated circuits shrinking, the width of copper interconnection has become a major challenge for technological breakthroughs, while reducing the thickness of the diffusion barrier layer to the molecular scale will help a lot. In order to achieve a molecular-level diffusion barrier and meet the conditions of non-toxic element materials, we select three different structures of nitrogen-based molecules to replace the TaN/TiN material, such as chain-backbone type, benzene-backbone type and face-down type, and utilize self-assembly technology to grow multilayer films on the copper substrate. The packing density of the nitrogen-based thin film will affect the blocking ability so we analyze the variety of the film packing density with thermal treatment and found that the packing density will change after annealing while the molecular content maintained. Moreover, the face-down type molecular film can have better blocking ability after high temperature treatment. Therefore, the nitrogen-based self-assembled thin film can be selected as a new diffusion barrier layer material. In addition, this study uses the film packing density to investigate the attenuation length (AL) of the photoelectrons excited by X-ray and finds that the change in the attenuation length can be used to preliminarily judge the relative packing density of the ultra-thin film.

中文摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧與相關理論 4 2-1 擴散阻擋層簡介 (Diffusion Barrier Layer) 4 2-1-1 阻擋層的定義與性質 4 2-1-2 擴散阻擋層的種類 5 2-2 自組裝薄膜 (Self-assembled thin film) 8 2-2-1 自組裝薄膜之優勢 9 2-2-2 自組裝活性分子之結構 9 2-2-3 自組裝分子薄膜之成膜機制與特性 13 2-2-4 自組裝分子薄膜之製備方法 14 2-2-5 自組裝薄膜之應用 16 2-3 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 18 2-3-1 儀器介紹 19 2-3-2 儀器原理 19 2-3-3 光電效應(photoelectron effect) 21 2-3-4 化學位移(chemical shift) 22 2-3-5 超高真空(UHV)與表面分析 24 2-3-6 數據處理 25 2-3-7 定量分析 27 2-3-8 X 射線光電子能譜法的應用 28 2-4 衰減長度 (Attenuation length) 29 第三章 實驗方法與流程 32 3-1 實驗設備 32 3-2 實驗藥品與器材 32 3-3 實驗步驟 33 3-3-1 實驗流程圖 33 3-3-2 樣品瓶清潔 34 3-3-3 銅基板處理 34 3-3-4 成長氮類分子自組裝薄膜 34 3-3-5 氮類分子自組裝薄膜之熱處理 35 3-4 分析儀器簡介 36 3-4-1 分析儀器 36 3-4-2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FESEM) 36 3-4-3 接觸角量測儀(Contact Angle, C.A.) 37 3-4-4 熱重分析儀(Thermogravimetric Analysis,TGA) 40 3-4-5 橢圓偏光儀(Ellipsometer) 41 3-4-6 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy,XPS) 42 3-4-7 原子力顯微鏡(Atomic Force Microscope,,AFM) 43 3-4-8 X光繞射分析儀(X-ray Diffraction,XRD) 44 3-4-9 電化學分析儀 45 3-4-10 四點探針 (Four Point Probe) 47 第四章 結果與討論 48 4-1 氮類分子自組裝薄膜結構設計 ( Nitrogen-based molecules thin film ) 48 4-2 銅基板特性分析 51 4-2-1 表面潤濕性分析 51 4-2-2 表面晶體分析 51 4-2-3 表面形貌分析 53 4-3 高溫處理後之氮類分子自組裝薄膜分析 54 4-3-1 氮類分子材料介紹 54 4-3-2 材料熱穩定性 56 4-3-3 表面潤濕性分析 59 4-3-4 XPS表面元素分析 61 4-3-5 薄膜表面形貌分析 63 4-3-6 氧化反應分析 68 4-3-7 電化學分析 72 4-4 衰減長度之探討 77 4-4-1 不同厚度之自組裝薄膜 77 4-4-2 粒徑大小增加之銅基板 79 4-4-3堆積密度降低之薄膜 80 4-4-4 表面缺陷增加之薄膜 81 4-4-5堆積密度提升之薄膜 81 第五章 結論與未來展望 83 參考文獻 84

1. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H., Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development 1998, 42 (5), 567-574.
2. Nicolet, M.-A., Diffusion barriers in thin films. Thin Solid Films 1978, 52 (3), 415-443.
3. Waldrop, M. M., The chips are down for Moore’s law. Nature News 2016, 530 (7589), 144.
4. Jennings, G. K.; Yong, T.-H.; Munro, J. C.; Laibinis, P. E., Structural effects on the barrier properties of self-assembled monolayers formed from long-chain ω-alkoxy-n-alkanethiols on copper. Journal of the American Chemical Society 2003, 125 (10), 2950-2957.
5. Jourdan, N.; Carbonell, L.; Heylen, N.; Swerts, J.; Armini, S.; Caro, A. M.; Demuynck, S.; Croes, K.; Beyer, G.; Tökei, Z., Evaluation of metallization options for advanced Cu interconnects application. ECS Transactions 2011, 34 (1), 515.
6. Schwierz, F.; Liou, J. J. In Status and Future Prospects of CMOS Scaling and Moore's Law-A Personal Perspective, 2020 IEEE Latin America Electron Devices Conference (LAEDC), IEEE: 2020; pp 1-4.
7. Koh, W.; Kumar, D.; Li, W.-M.; Sprey, H.; Raaijmakers, I. J., Meeting the Cu diffusion barrier challenge using ALD tungsten nitride carbide. Solid State Technology 2005, 48 (6), 54-58.
8. Wang, P.; Metzger, R. M.; Bandow, S.; Maruyama, Y., Superconductivity in Langmuir-Blodgett multilayers of fullerene (C60) doped with potassium. The Journal of Physical Chemistry 1993, 97 (12), 2926-2927.
9. Blodgett, N. S., Steam generating unit. Google Patents: 1964.
10. Bigelow, W.; Pickett, D.; Zisman, W., Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science 1946, 1 (6), 513-538.
11. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102 (1), 92-98.
12. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
13. Ulman, A., Formation and structure of self-assembled monolayers. Chemical review 1996, 96 (4), 1533-1554.
14. Chechik, V.; Crooks, R. M.; Stirling, C. J., Reactions and reactivity in self‐assembled monolayers. Advanced Materials 2000, 12 (16), 1161-1171.
15. Ballav, N.; Terfort, A.; Zharnikov, M., Mixing of nonsubstituted and partly fluorinated alkanethiols in a binary self-assembled monolayer. The Journal of Physical Chemistry C 2009, 113 (9), 3697-3706.
16. Campbell, I.; Kress, J.; Martin, R.; Smith, D.; Barashkov, N.; Ferraris, J., Controlling charge injection in organic electronic devices using self-assembled monolayers. Applied Physics Letters 1997, 71 (24), 3528-3530.
17. Schwartz, D. K., Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry 2001, 52 (1), 107-137.
18. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self--Assembly. Academic press: 2013.
19. Raman, A.; Gawalt, E. S., Self-assembled monolayers of alkanoic acids on the native oxide surface of SS316L by solution deposition. Langmuir 2007, 23 (5), 2284-2288.
20. Raman, A.; Dubey, M.; Gouzman, I.; Gawalt, E. S., Formation of self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS316L. Langmuir 2006, 22 (15), 6469-6472.
21. Mahapatro, A.; Johnson, D. M.; Patel, D. N.; Feldman, M. D.; Ayon, A. A.; Agrawal, C. M., Surface modification of functional self-assembled monolayers on 316L stainless steel via lipase catalysis. Langmuir 2006, 22 (3), 901-905.
22. Bhushan, B., Self-Assembled Monolayers for Nanotribology and Surface Protection. In Springer Handbook of Nanotechnology, Springer: 2017; pp 1179-1214.
23. Haensch, C.; Hoeppener, S.; Schubert, U. S., Chemical modification of self-assembled silane based monolayers by surface reactions. Chemical Society Reviews 2010, 39 (6), 2323-2334.
24. Pflaum, J.; Bracco, G.; Schreiber, F.; Colorado Jr, R.; Shmakova, O.; Lee, T.; Scoles, G.; Kahn, A., Structure and electronic properties of CH3-and CF3-terminated alkanethiol monolayers on Au (111): a scanning tunneling microscopy, surface X-ray and helium scattering study. Surface science 2002, 498 (1-2), 89-104.
25. Bain, C. D.; Evall, J.; Whitesides, G. M., Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. Journal of the American Chemical Society 1989, 111 (18), 7155-7164.
26. Gittins, D. I.; Bethell, D.; Schiffrin, D. J.; Nichols, R. J., A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 2000, 408 (6808), 67-69.
27. Blomberg, E.; Claesson, P. M.; Konradsson, P.; Liedberg, B., Globotriose-and oligo (ethylene glycol)-terminated self-assembled monolayers: Surface forces, wetting, and surfactant adsorption. Langmuir 2006, 22 (24), 10038-10046.
28. Yan, L.; Marzolin, C.; Terfort, A.; Whitesides, G. M., Formation and reaction of interchain carboxylic anhydride groups on self-assembled monolayers on gold. Langmuir 1997, 13 (25), 6704-6712.
29. Zhao, X.; Kopelman, R., Mechanism of organosilane self-assembled monolayer formation on silica studied by second-harmonic generation. The Journal of Physical Chemistry 1996, 100 (26), 11014-11018.
30. Tao, Y. T., Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. Journal of the American Chemical Society 1993, 115 (10), 4350-4358.
31. Tao, Y. T.; Lee, M. T.; Chang, S. C., Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties. Journal of the American Chemical Society 1993, 115 (21), 9547-9555.
32. Chechel, O.; Nikolaev, E.,devices for production of lamgmuir-biodgett films. Instruments and experimental techniques 1991, 34 (4), 750-762.
33. Schubert, D. W.; Dunkel, T., Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations 2003, 7 (5), 314-321.
34. Zhen, Q.; Bashir, S.; Liu, J. L., Nanostructured Materials for Next-Generation Energy Storage and Conversion: Advanced Battery and Supercapacitors. Springer Nature: 2019.
35. Pantazopoulos, G.; Papazoglou, T.; Psyllaki, P.; Sfantos, G.; Antoniou, S.; Papadimitriou, K.; Sideris, J., Sliding wear behaviour of a liquid nitrocarburised precipitation-hardening (PH) stainless steel. Surface and Coatings Technology 2004, 187 (1), 77-85.
36. Sigal, G. B.; Bamdad, C.; Barberis, A.; Strominger, J.; Whitesides, G. M., A self-assembled monolayer for the binding and study of histidine-tagged proteins by surface plasmon resonance. Analytical Chemistry 1996, 68 (3), 490-497.
37. Hautman, J.; Klein, M. L., Simulation of a monolayer of alkyl thiol chains. The Journal of Chemical Physics 1989, 91 (8), 4994-5001.
38. Bhatia, R.; Garrison, B. J., Phase transitions in a methyl-terminated monolayer self-assembled on Au {111}. Langmuir 1997, 13 (4), 765-769.
39. Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E., Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers. Journal of the American Chemical Society 1993, 115 (21), 9389-9401.
40. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science 2000, 65 (5-8), 151-257.
41. Vickerman, J. C.; Gilmore, I. S., Surface analysis: the principal techniques. John Wiley & Sons: 2011.
42. Steinhardt, R.; Serfass, E., X-ray photoelectron spectrometer for chemical analysis. Analytical Chemistry 1951, 23 (11), 1585-1590.
43. Hargittai, M., Kai Siegbahn (1918–2007). Springer: 2008.
44. Thermo VG Scientific operators manual.
45. Gasiorowicz, S.; Rosner, J. L., Hadron spectra and quarks. American Journal of Physics 1981, 49 (10), 954-984.
46. Hu, H.; Carim, A., Determination of attenuation lengths and electron escape depths in silicon nitride thin films. Journal of The Electrochemical Society 1993, 140 (11), 3203.
47. Doyle, M.; Fuller, T. F.; Newman, J., Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of the Electrochemical society 1993, 140 (6), 1526.
48. Pong, W.; Sumida, R.; Moore, G., Attenuation Length for Photoelectrons in Metal Films. Journal of Applied Physics 1970, 41 (4), 1869-1870.
49. Stenley, F., Scanning and transmission electron microscopy. WH Freeman: 1993.
50. Fujiwara, H., Spectroscopic ellipsometry: principles and applications. John Wiley & Sons: 2007.
51. Azzam, R.; Bashara, N., Ellipsometry and Polarized Light, third impression. North-Holland, Amsterdam: 1992.
52. Hawn, D. D., Characterization of SiLK I™ Semiconductor Dielectric by XPS. Surface Science Spectra 2002, 9 (1), 1-5.
53. Haasch, R.; Lee, T.-Y.; Gall, D.; Greene, J.; Petrov, I., Epitaxial TiN (001) grown and analyzed in situ by XPS and UPS. I. Analysis of as-deposited layers. Surface Science Spectra 2000, 7 (3), 193-203.
54. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. Wiley New York: 1980; Vol. 2.
55. Pletcher, D., A first course in electrode processes, The Electrochemical Consultancy. Hampshire 1991.
56. Crow, D. R., Principles and applications of electrochemistry. CRC Press: 1994.
57. Pletcher, D.; Walsh, F. C., Industrial electrochemistry. Springer Science & Business Media: 2012.
58. Ossowski, J.; Rysz, J.; Krawiec, M.; Maciazek, D.; Postawa, Z.; Terfort, A.; Cyganik, P., Oscillations in the Stability of Consecutive Chemical Bonds Revealed by Ion‐Induced Desorption. Angewandte Chemie International Edition 2015, 54 (4), 1336-1340.
59. Poulston, S.; Parlett, P.; Stone, P.; Bowker, M., Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 1996, 24 (12), 811-820.
60. National Center for Biotechnology Information. PubChem Database. CID=11129290. https://pubchem.ncbi.nlm.nih.gov/compound/1H-1_2_4-Triazole-3_5-diamine_-1-dodecyl (accessed June 12, 2020).
61. National Center for Biotechnology Information. PubChem Database. CID=29542. https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Diamino-6-_4-methylphenyl_-1_3_5-triazine (accessed June 12, 2020).
62. National Center for Biotechnology Information. PubChem Database. Guanosine, CID=135398635. https://pubchem.ncbi.nlm.nih.gov/compound/Guanosine (accessed June 12, 2020).

無法下載圖示 全文公開日期 2025/08/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE