簡易檢索 / 詳目顯示

研究生: 楊崇榮
Chung-Rong Yang
論文名稱: 通過大氣電漿處理與低溫退火對聚甲丙烯酸甲酯(PMMA)微流道進行表面活化鍵合暨血液檢測之研究
Research on surface activation bonding of polymethyl methacrylate (PMMA) microchannels through atmospheric plasma treatment and low temperature annealing and blood testing
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
陳品銓
Pin-Chuan Chen
李天錫
Tien-Hsi Lee
楊孔嘉
Kung-Chia Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 大氣電漿處理PMMA微流道CO2雷射蝕刻
外文關鍵詞: O2 Plasma, PMMA micro-channel, CO2 laser sintering
相關次數: 點閱:272下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用O2大氣電漿與低溫退火技術,對聚甲丙烯酸甲酯 (Polymethyl methacrylate, PMMA)表面進行改質與鍵合,使PMMA/PMMA於表面形成Si–O–Si共價鍵達成鍵合效果,以改變PMMA鍵合的製程方式,由於以往PMMA使用溶劑黏合法會需要在高溫下進行,但這樣的高溫環境會使得PMMA微流道結構產生變形,故與使用溶劑黏合法鍵合的PMMA進行比較,兩種製程的結果其鍵合強度幾乎相當,達到10 MPa的平均值。接著,使用二氧化碳雷射蝕刻 (CO2 laser etching, CLE)製程技術,刻劃出PMMA/ PMMA構成之3D微流道元件,並於電子顯微鏡底下觀察微流道鍵合的結果,觀察孔位對位連接的完整性。最後,使用微流道裝置並結合拉曼光譜儀,對血液進行檢測,該裝置能夠成功收集到各項血液拉曼數據,且其結果與文獻的結果相符合,成功地觀察出許多的生物訊息。


    This research uses O2 atmospheric plasma and low-temperature annealing technique to modify and bond the surface of PMMA. The O2 plasma used to modify the surface to form Si–O–Si covalent bonds on the surface of PMMA/PMMA. The formed Si–O–Si bonds changes the process of PMMA bonding. In the past, the solvent bonding method used for PMMA bonding need to be carried out at high temperature, but such a high temperature environment would deform the PMMA microchannel structure, so the bonding with the solvent bonding method is not appropriate for PMMA microchannel bonding. Comparing with solvent bonding and O2 atmospheric plasma bonding of PMMA, the bonding strength of the two processes is almost the same. The mean bonding strength achieves 10 MPa. Then, using CO2 laser etching (CLE) process with sandblasting technique was used to fabricate the PMMA/PMMA 3D micro-channel components, and the bonded micro-channel was analyzed using an electron microscope, and observe the connection of each hole. Finally, a microfluidic device combined with a Raman spectrometer is used to detect blood. The device can successfully collect various Raman data for blood samples, and the results are consistent with those in the literature, and many biological information have been successfully observed.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 溶劑黏合法 4 2.1.1 溶劑黏合法原理 4 2.1.2 溶劑黏合法應用 4 2.2 電漿低溫鍵合製程 7 2.2.1 電漿原理及介紹 7 2.2.2 電漿鍵合應用 8 2.3 CO2雷射蝕刻技術(CO2 laser etching, CLE) 10 2.3.1 CO2雷射原理 10 2.3.2 CO2雷射蝕刻應用 10 2.4 拉曼光譜分析法(Raman spectroscopy) 13 2.4.1 拉曼光譜原理 13 2.4.2 拉曼光譜血液檢測 14 第三章 實驗方法與步驟 17 3.1 研究流程概述 17 3.2 實驗器材 18 3.2.1 加熱設備 18 3.2.2 表面電漿處理設備 18 3.2.3 CLS設備 18 3.2.4 材料拉伸試驗機(Material Test System, MTS) 19 3.2.5 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 19 3.2.6 拉曼光譜檢測儀 19 3.3 PMMA/PMMA鍵合製程 24 3.4 PMMA微流道製程 27 3.5 3D微流道裝置結合血液並運用拉曼光譜儀檢測 29 第四章 結果與討論 30 4.1 PMMA/PMMA鍵合製程 30 4.2 PMMA微流道製程 56 4.3 3D微流道裝置結合血液並運用拉曼光譜儀檢測 65 第五章 結論 69 第六章 未來展望 70 參考文獻 71 附錄一 77 附錄二 79

    [1] R. Daw and J. Finkelstein, "Lab on a chip," Nature, vol. 442, no. 7101, pp. 367, Jul. 2006.
    [2] D. R. Reyes, D. Iossifidis, P. A. Auroux and A. Manz, "Micro Total Analysis Systems. 1. Introduction, Theory, and Technology," Analytical Chemistry, vol. 74, no. 12, pp. 2623-2636, May. 2002.
    [3] H. Hongyun et al., "Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network, "Biomaterials, vol. 28, no. 26, pp. 3815-3823, May 2007.
    [4] G. Lenk et al., "A disposable chip enabling metering in dried blood spot sampling", Micro TAS, pp. 281-283, 2013.
    [5] H. Takao et al., "A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon," Sensors and Actuators A: Physical, vol. 119, no. 2, pp. 468-475, April. 2005.
    [6] A. M. K. Enejder et al., "Blood analysis by Raman spectroscopy," Optics letters, vol. 27, no. 22, pp. 2004-2006, Nov. 2002.
    [7] B. Baumann et al., "Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT," Biomedical optics express, vol. 2, no. 6, pp. 1539-1552, Jun. 2011.
    [8] J. J. Shah et al., "Capillarity induced solvent-actuated bonding of polymeric microfluidic devices" Anal. Chem., vol. 78, no. 4, pp. 3348-3353, Apr. 2006.
    [9] Z. F. Chen, Y. H. Gao, J. M. Lin, R. G. Su and Y. Xie, "Vacuum-assisted thermal bonding of plastic capillary electrophoresis microchip imprinted with stainless steel template, " J. Chromatogr. A, vol. 1038, no. 1-2, pp. 239-245, Jun. 2004.
    [10] R. T. Kelly and A. T. Woolley, "Thermal bonding of polymeric capillary electrophoresis microdevices in water," Anal. Chem., vol. 75, no. 8, pp. 1941-1945, Apr. 2003.
    [11] A. Bamshad, A. Nikfarjam and H. Khaleghi, "A new simple and fast thermally-solventassisted method to bond PMMA–PMMA in micro-fluidics devices," J. Micromech. Microeng, vol. 26, no. 6, pp. 065017, May. 2019.
    [12] M. Rahbar, S. Chhina, D. Sameoto, and M. Parameswaran, "Microwave-induced, thermally assisted solvent bonding for low-cost PMMA microfluidic devices," Journal of Micromechanics and Microengineering., vol. 20, no. 1, pp. 015026, Dec. 2010.
    [13] A. Schütze et al., "The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources," IEEE Transactions on Plasma Science, Vol. 26, no. 6, pp. 1685-1694, Dec. 1998.
    [14] Y. Akishev et al., "Studies on cold plasma–polymer surface interaction by example of PP- and PET-films," J. Phys. D: Appl. Phys., vol. 41, no. 23, pp. 235203, Nov. 2008.
    [15] X. L. Zhu, G. Liu and Y. H. Guo, "Study of PMMA thermal bonding," Microsyst Technol, vol. 13, no. 3, pp. 403-407, Feb. 2007.
    [16] M. E. Vlachopoulou et al., "A low temperature surface modification assisted method for bonding plastic substrates," Journal of Micromechanics and Microengineering, vol. 19, no.1, pp. 15007, Jan. 2009.
    [17] X. Chen, J. Shen, and M. Zhou "Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding," Journal of Micromechanics and Microengineering, vol. 26, no. 10, pp. 107001, Aug. 2016.
    [18] M. R. B. Andreeta et al., "Bidimensional codes recorded on an oxide glass surface using a continuous wave CO2 laser," Journal of Micromechanics and Microengineering, vol. 21, no. 2, pp. 025004, Jan. 2011.
    [19] X. Chen et al., "Using orthogonal experimental method optimizing surface quality of CO2 laser cutting process for PMMA microchannels," The International Journal of Advanced Manufacturing Technology, vol. 88, pp. 2727-2733, 2017.
    [20] A. K. M. Ayatullah Hosne Asif et al., "A Brief Overview of Different Analytical Techniques for Material and Chemical Analysis," International Journal of Instrumentation Science, vol. 7, no. 1, pp. 1-12, Oct. 2020.
    [21] M. Zhang et al., "Microscopic Raman Spectroscopy Analysis for Human Blood in Capillary," Spectroscopy and Spectral Analysis, vol. 39, no. 3, pp. 797-801, Mar. 2019.
    [22] C. G. Atkins, K. Buckley, M. W. Blades, and R. F. Turner, "Raman spectroscopy of blood and blood components," Applied spectroscopy, vol. 71, no. 5, pp. 767-793, Apr. 2017.
    [23] K. Virkler and I. K. Lednev, "Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids," Forensic Science International, vol. 181, no. 1-3, pp. e1-e5, Oct. 2008.
    [24] S. K. Y. Tang et al., "Continuously tunable microdroplet-laser in a microfluidic channel," Optics express, vol. 19, no. 3, pp. 2204-2215, Jan. 2011.
    [25] ASTM D638–10, Standard test method for tensile properties of plastics. Philadelphia: American Society of Testing and Materials; 2010.
    [26] W. Premasiri, J. Lee and L. Ziegler, "Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing," The Journal of Physical Chemistry B, vol. 116, no. 31, pp. 9376-9386, 2012.
    [27] V. Dragoi et al., "Wafer-level plasma activated bonding: new technology for MEMS fabrication," Microsystem Technologies, vol.14, pp. 509-515, 2008.
    [28] S. Boyd, M. F. Bertino and S. J. Seashols, "Raman spectroscopy of blood samples for forensic applications," Forensic Science International, vol. 208, no. 1-3, pp. 124-128, May 2011.
    [29] S. Dhakal et al., "Identification and evaluation of composition in food powder using point-scan Raman spectral imaging," Applied Sciences, vol. 7, no. 1, pp. 1, 2017.
    [30] A. Jane, R. Dronov, A. Hodges, N. H. Voelcker, "Porous silicon biosensors on the advance," Trends in biotechnology, vol.27, no. 4, pp. 230-239, Apr. 2009.
    [31] S. P. Ng, F. E. Wiria and N. B. Tay, "Low distortion solvent bonding of microfluidic chips," Procedia Engineering, vol. 141, pp. 130-137, Dec.2016.
    [32] H. Yu et al., "Low temperature and deformation-free bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treatment and PVA coating," RSC Advances, vol.5, no. 11, pp. 8377-8388, 2015.
    [33] B. Bilenberg et al., "PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics." Journal of Micromechanics and Microengineering, vol. 14, no. 6, pp. 814, Apr. 2004.
    [34] H. Shinohara, J. Mizuno and S. Shoji, "Low‐temperature direct bonding of poly (methyl methacrylate) for polymer microchips," IEEJ Transactions on Electrical and Electronic Engineering, vol. 2, no. 3, pp. 301-306, Apr. 2007.
    [35] Y. H. Tennico et al., "Surface modification-assisted bonding of polymer-based microfluidic devices," Sensors and Actuators B: Chemical, vol.143, no. 2, pp. 799-804, 2010.
    [36] L. Z. Tang and N. Y. Lee, "A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature," Lab on a Chip, vol.10, no. 10, pp. 1274-1280, May 2010.
    [37] C. H. Lin, C. H. Chao and C. W. Lan, "Low azeotropic solvent for bonding of PMMA microfluidic devices," Sensors and Actuators B, vol. 121, no. 2, pp. 698-705, Feb. 2007.
    [38] P. C. Chen and L. H. Duong, "Novel solvent bonding method for thermoplastic microfluidic chips," Sensors and Actuators B, vol. 237, pp. 556-562, Dec. 2016.
    [39] K. Kim, S. W. Park and S. S. Yang, "The optimization of PDMS-PMMA bonding process using silane primer," BioChip J., vol. 4, no. 2, pp. 148-154, Jun. 2010.
    [40] M. Okutomi et al., "Sintering of new oxide ceramics using a high power cw CO2 laser," Appl. Phys. Lett., vol. 44, no. 12, pp. 1132-1134, 1984.
    [41] C. W. Tsao et al., "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab Chip, vol. 7, no. 4, pp. 499-505, Apr. 2007.
    [42] H. Y. Tan, W. K. Loke and N. T. Nguyen, "A reliable method for bonding polydimethylsiloxane (PDMS) to polymethylmethacrylate (PMMA) and its application in micropumps," Sensors and Actuators B, vol. 151, no.1 pp. 133-139, Nov. 2010.
    [43] Q. Liu, J. R. de Wijn, and C. A. van Blitterswijk, "Covalent bonding of PMMA, PBMA, and poly (HEMA) to hydroxyapatite particles," J Biomed Mater Res, vol. 40, no. 2-3, pp. 257-263, Dec. 1998.
    [44] R. Velu and S. Singamneni, "Selective laser sintering of polymer biocomposites based on polymethyl methacrylate," Journal of Materials Research, vol. 29, no. 17, pp. 1883-1892, Sep. 2014.
    [45] X. Chen, T. Li, K. Zhai, Z. Hu and M. Zhou "Using orthogonal experimental method optimizing surface qualityof CO2 laser cutting process for PMMA microchannels," J Adv Manuf Technol, vol. 88, pp.2727-2733, 2017.
    [46] H. Klank, J. P. Kutter, and O. Geschke, "CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems," Lab Chip, vol. 2, no. 4, pp. 242-246, 2002.
    [47] Y. C. Hsu and T. Y. Chen, "Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices," Biomedical Microdevices, vol. 9, no. 4, pp. 513-522, Aug. 2007.
    [48] C. F. Huang and F. C. Chang, "Comparison of hydrogen bonding interaction between PMMA/PMAA blends and PMMA-co-PMAA copolymers," Polymer, vol. 44, no. 10, pp. 2965-2974, May 2003.
    [49] C. T. Lina et al., "Glass transition temperature enhancement of PMMA through copolymerization with PMAAM and PTCM mediated by hydrogen bonding," Polymer, vol. 51, no. 4, pp. 883-889, Feb. 2010.
    [50] M. M. Faghih and M. K. Sharp, "Solvent-based bonding of PMMA–PMMA for microfluidic applications," Microsystem Technologies, vol. 25, no. 9, pp. 3547-3558, Sep. 2019.
    [51] A. M. D. Wan, T. A. Moore and E. W. K. Young, "Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices," Journal of Visualized Experiments, no. 119, Jan. 2017.
    [52] Spectral Database for Organic Compounds SDBS. Retrieved from https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi

    QR CODE