簡易檢索 / 詳目顯示

研究生: SUGIANTO
SUGIANTO
論文名稱: Synthesis and Characterization of CuO decorated Ag Dendrites for CO2 Reduction
Synthesis and Characterization of CuO decorated Ag Dendrites for CO2 Reduction
指導教授: 氏原真樹
Masaki Ujihara
口試委員: 今榮東洋子
Toyoko Imae
陳瑞山
Ruei-San Chen
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 63
中文關鍵詞: 裝飾有CuO龍牙一步法兩步法電化學沉積固定電流固定電位
外文關鍵詞: CuO decorated, Ag dendrites, One-step process, Two--step process, Electrochemical deposition, Fixed current, Fixed potential
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

可見光驅動的催化反應已引起廣泛關注,因為它能夠將豐富的太陽能轉化為可及的化學能,例如減少二氧化碳減排的潛力。為了減少二氧化碳減排的潛力,通過使用諸如Ag的等離子材料和諸如CuO的半導體提出了光電化學催化系統。在這項研究中, 我們通過一步一步和兩步過程的電沉積方法設計了CuO裝飾的Ag樹突。檢查溶液中Ag+:Cu2+比的變化以形成CuO裝飾的Ag樹突。在一步的過程中,樹突結構由Ag+:Cu2+比變化:隨著Cu2+比的增加,樹突的形態變短和變密,顏色變暗。在兩步過程中,首先通過兩種方法將Ag樹突形成為主要結構:固定電勢和固定電流過程。形成Ag樹突後,以不同的電流密度執行CuO在Ag樹突上的沉積。通過兩步過程獲得的裝飾有農業樹皮的CuO基本上保持了原始農業樹皮的高度分支結構, 隨著溶液中銅含量增加而變得更粗糙。XRD和XPS方法表明CuO是在Ag樹突上形成的, 沉積在Ag樹上的CuO量增加了較高的Cu2+比例和更長的沉積時間。通過一步和兩步過程獲得的Ag樹突在可見範圍內顯示出寬的等離子體吸收帶, 吸光度由CuO在350-650 nm左右增加。等離子共振導致碳酸氫鹽水溶液中碳酸鹽的強烈SERS信號。隨著CuO含量的增加,碳酸鹽的SERS信號變得更強,這表明樹突表面上的CuO促進了碳酸鹽離子的吸附。因此,碳酸鹽吸收在樹突表面上,並被表面增強作用強烈激發。在這項研究中獲得的這些結果表明,裝飾有CuO的Ag樹皮有望在太陽光照射下降低光電化學CO2。


Visible light-driven catalytic reactions have received widespread attention because of the ability to convert abundant solar energy into accessible chemical energy, such as reducing the overpotential of CO2 reduction. In order to reducing the overpotential of CO2 reduction, photoelectrochemical catalytic system was proposed by using plasmonic materials such as Ag and semiconductors such as CuO. In this study, we designed the CuO decorated Ag dendrites by an electrodeposition method with a one-step and two-step processes. The variation of Ag+:Cu2+ ratios in solutions was examined to form CuO decorated Ag dendrites. In the one-step process, the dendrite structures were varied by the Ag+:Cu2+ ratio: As the Cu2+ ratio increased, the morphologies of dendrites became shorter and denser, and the colour became darker. In a two-step process, the Ag dendrites were first formed as the main structure with two approaches: fixed potential and fixed current processes. After forming the Ag dendrites, the deposition of CuO on Ag dendrites was performed with different current densities. The CuO decorated Ag dendrites obtained by the two-step process basically maintained the highly branched structure of the original Ag dendrites, and became coarser with the increased amount of Cu2+ ratio in the solution. The XRD and XPS methods showed that the CuO was formed on the Ag dendrites, and the amount of CuO deposited on the Ag dendrites increased by the higher Cu2+ ratio and the longer deposition time. The Ag dendrites, obtained by both the one- and the two-step processes, showed the wide plasmonic absorption band in the visible range, and the absorbance increased by the CuO around 350-650 nm. The plasmonic resonance resulted in the strong SERS signals for carbonates in aqueous bicarbonate solutions. The SERS signal of carbonates became stronger as the amount of CuO increased, which suggests that the CuO on the dendrite surfaces promoted the adsorption of carbonate ions. Thus, the carbonates absorbed on the dendrite surface and were strongly excited by the surface-enhancing effect. These results obtained in this study demonstrated that the CuO decorated Ag dendrites were promising for the photoelectrochemical CO2 reduction under solar light irradiation.

摘要 iii ABSTRACT iv Acknowledgment v Table of Contents vi List of Figures viii CHAPTER 1 – Introduction and Motivation 1 1.1 Introduction 1 1.1.1 Background 1 1.1.2 Plasmon-enhanced photocatalytic CO2 reduction 2 1.1.3 Silver for plasmonic photocatalyst 4 1.1.4 Copper for CO2 reduction 5 1.2 Motivation and Objective of This Work 6 CHAPTER 2. Experimental Section 7 2.1 Research Design 7 2.2 Materials 7 2.3 Synthesis of the Ag dendrite 8 2.3.1. Based on Applied Potential 8 2.3.2. Based on Applied Current 9 2.4 Synthesis of the CuO decorated Ag Dendrite nanocomposite 10 2.4.1 One-Step Process 10 2.4.2 Two-Step Process 11 2.5 Characterization of materials 12 2.6 Electrochemical characterization 13 2.7 Carbonate adsorption on nanocomposites for CO2 reduction behaviour. 13 Chapter 3. Result and Discussion 14 3.1 Morphology of CuO decorated Ag dendrites 14 3.1.1 CuO decorated Ag dendrites synthesized by a one-step process 14 3.1.2 Two-step process of synthesizing CuO decorated Ag dendrites 17 3.1.2.1 Synthesis of Ag dendrites at fixed potential 18 3.1.2.2 Synthesis of Ag dendrites at fixed current 18 3.1.3 Deposition of CuO on Ag dendrites 20 3.1.3.1 Deposition of CuO at -1.0 mA/cm2 20 3.1.3.2 Deposition of CuO at -0.1 mA/cm2 21 3.2 Elemental Mapping of CuO decorated Ag dendrites 24 3.2.1 CuO decorated Ag dendrites synthesized by a one-step process 24 3.2.2 CuO decorated Ag dendrites synthesized by a two-step process 26 3.2.2.1 Ag dendrites synthesized at fixed potential 26 3.2.2.2 Ag dendrites synthesized at fixed current 28 3.2.2.3 Deposit of CuO on Ag dendrites 29 a. Deposition of CuO on Ag dendrites at -1.0 mA/cm2 29 b. Deposition of CuO on Ag dendrites at -0.1 mA/cm2 31 3.3 Crystallinity of CuO decorated Ag dendrites 33 3.4 XPS analysis of CuO decorated Ag dendrites 36 3.5 Absorbance spectra of CuO decorated Ag dendrites 38 3.6 Cyclic voltammetry of CuO decorated Ag dendrites 40 3.7 Raman Spectra of CuO decorated Ag dendrites 42 Chapter 4. Summary and Future Works 44 Future works: 45 References 46

[1] Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/CO2-and-other-greenhouse-gas-emissions' [Online Resource]
[2] Dr. Pieter Tans, NOAA/GML (gml.noaa.gov/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
[3] Zhang, S., Fan, Q., Xia, R., & Meyer, T. J. (2020). CO2 reduction: From homogeneous to heterogeneous electrocatalysis. Accounts of Chemical Research, 53(1), 255–264.
[4] X. Lan, B. D. Hall, G. Dutton, J. Mühle, and J. W. Elkins. (2020). Atmospheric composition [in State of the Climate in 2018, Chapter 2: Global Climate]. Special Online Supplement to the Bulletin of the American Meteorological Society, Vol.101, No. 8, August, 2020.
[5] Lindsey, R. (2009). Climate and Earth’s energy budget. Accessed December 26, 2022.
[6] Verma, S., Lu, S., & Kenis, P. J. (2019). Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nature Energy, 4(6), 466–474.
[7] Roy, S., Cherevotan, A., & Peter, S. C. (2018). Thermochemical CO2 hydrogenation to single carbon products: Scientific and technological challenges. ACS Energy Letters, 3(8), 1938–1966.
[8] Wang, C., Yue, H., Li, C., Liang, B., Zhu, J., & Xie, H. (2014). Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium. Industrial & Engineering Chemistry Research, 53(19), 7971–7978.
[9] Barin, R., Biria, D., Rashid-Nadimi, S., & Asadollahi, M. A. (2018). Enzymatic CO2 reduction to formate by formate dehydrogenase from candida boidinii coupling with direct electrochemical regeneration of NADH. Journal of CO2 Utilization, 28, 117–125.
[10] Albo, J., Alvarez‐Guerra, M., & Irabien, A. (2021). Electro‐, photo‐, and photoelectron chemical reduction of CO2 . Heterogeneous Catalysts, 649–669.
[11] Jones, J.-P., Prakash, G. K., & Olah, G. A. (2014). Electrochemical CO2 reduction: Recent advances and current trends. Israel Journal of Chemistry, 54(10), 1451–1466.
[12] Zhang, N., Long, R., Gao, C. et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 61, 771–805 (2018).
[13] Xu, S., & Carter, E. A. (2018). Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chemical Reviews, 119(11), 6631–6669.
[14] Choi, K. M., Kim, D., Rungtaweevoranit, B., Trickett, C. A., Barmanbek, J. T., Alshammari, A. S., Yang, P., & Yaghi, O. M. (2016). Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under Visible light. Journal of the American Chemical Society, 139(1), 356–362.
[15] Solar Spectra. NREL.gov. (n.d.). Retrieved January 30, 2023, from http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
[16] Zhang, H., Wang, T., Wang, J., Liu, H., Dao, T. D., Li, M., Liu, G., Meng, X., Chang, K., Shi, L., Nagao, T., & Ye, J. (2016). Surface‐plasmon‐enhanced Photodriven CO2 reduction catalyzed by metal–organic‐framework‐derived iron nanoparticles encapsulated by Ultrathin Carbon Layers. Advanced Materials, 28(19), 3703–3710.
[17] Creel, E., Kim, Y., Corson, E., Qiu, F., Kostecki, R., Urban, J. J., & McCloskey, B. D. (2016). Plasmon-enhanced photocatalytic CO2 reduction using colloidal nanocrystals. ECS Meeting Abstracts, MA2016-02(49), 3603–3603.
[18] Su, Y., Dong, Y., Bao, L., Dai, C., Liu, X., Liu, C., Ma, D., Jia, Y., Jia, Y., & Zeng, C. (2022). Increasing electron density by surface plasmon resonance for enhanced photocatalytic CO2 Reduction. Journal of Environmental Management.
[19] Gu, M., Liu, D., Ding, T., Liu, X., Chen, T., Shen, X., & Yao, T. (2021). Plasmon-assisted photocatalytic CO2 reduction on au decorated ZrO2 catalysts. Dalton Transactions, 50(18), 6076–6082.
[20] Zhao, J., Liu, B., Meng, L., He, S., Yuan, R., Hou, Y., Ding, Z., Lin, H., Zhang, Z., Wang, X., & Long, J. (2019). Plasmonic control of solar-driven CO2 conversion at the metal/zno interfaces. Applied Catalysis B: Environmental, 256, 117823.
[21] Zhao, H., Zheng, X., Feng, X., & Li, Y. (2018). CO2 reduction by plasmonic Au nanoparticle-decorated TiO2 photocatalyst with an ultrathin Al2O3 interlayer. The Journal of Physical Chemistry C, 122(33), 18949–18956.
[22] Zhang, P., Wyman, I., Hu, J., Lin, S., Zhong, Z., Tu, Y., Huang, Z., & Wei, Y. (2017). Silver nanowires: Synthesis Technologies, growth mechanism and multifunctional applications. Materials Science and Engineering: B, 223, 1–23.
[23] Ha, H., Amicucci, C., Matteini, P., & Hwang, B. (2022). Mini Review of synthesis strategies of silver nanowires and their applications. Colloid and Interface Science Communications, 50, 100663.
[24] Xue, J., Zhou, Z.-K., Wei, Z., Su, R., Lai, J., Li, J., Li, C., Zhang, T., & Wang, X.-H. (2015). Scalable, full-colour and controllable chromotropic plasmonic printing. Nature Communications, 6(1).
[25] Fang, C., Jia, H., Chang, S., Ruan, Q., Wang, P., Chen, T., & Wang, J. (2014). (Gold Core)/(Titania Shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci., 7(10), 3431–3438.
[26] Li, H. B., Liu, P., Liang, Y., Xiao, J., & Yang, G. W. (2012). Super-sers-active and Highly Effective Antimicrobial Ag Nano dendrites. Nanoscale, 4(16), 5082.
[27] Abbas, S. A., Ma, A., Seo, D., Lim, Y. J., Park, J. Y., Lee, G., & Nam, K. M. (2021). Facile and large‐scale production of Ag nanoparticles for selective electrochemical CO2 reduction reaction. Bulletin of the Korean Chemical Society, 42(11), 1534–1538.
[28] Gu, C., & Zhang, T.-Y. (2008). Electrochemical synthesis of silver polyhedrons and dendritic films with super hydrophobic surfaces. Langmuir, 24(20), 12010–12016.
[29] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., & Yan, H. (2003). One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials, 15(5), 353–389.
[30] Sun, Y., Gates, B., Mayers, B., & Xia, Y. (2002). Crystalline silver nanowires by soft solution processing. Nano Letters, 2(2), 165–168.
[31] Rashid, M. H., & Mandal, T. K. (2007). Synthesis and catalytic application of nanostructured silver dendrites. The Journal of Physical Chemistry C, 111(45), 16750–16760.
[32] Dhanush, S., Sreejesh, M., Bindu, K., Chowdhury, P., & Nagaraja, H. S. (2018). Synthesis and electrochemical properties of silver dendrites and silver dendrites/RGO composite for applications in paracetamol sensing. Materials Research Bulletin, 100, 295–301.
[33] Cheng, Z., Qiu, Y., Li, Z., Yang, D., Ding, S., Cheng, G., Hao, Z., & Wang, Q. (2019). Fabrication of silver dendrite fractal structures for enhanced second harmonic generation and surface-enhanced Raman scattering. Optical Materials Express, 9(2), 860.
[34] Fu, L., Zhu, D., & Yu, A. (2015). Galvanic replacement synthesis of silver dendrites-reduced graphene oxide composites and their surface-enhanced Raman scattering characteristics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 149, 396–401
[35] Wei, Y., Chen, Y., Ye, L., & Chang, P. (2011). Preparation of dendritic-like Ag crystals using monocrystalline silicon as template. Materials Research Bulletin, 46(6), 929–936.
[36] Keita, B., Brudna Holzle, L. R., Ngo Biboum, R., Nadjo, L., Mbomekalle, I. M., Franger, S., Berthet, P., Brisset, F., Miserque, F., & Ekedi, G. A. (2011). Green wet chemical route for the synthesis of silver and palladium dendrites. European Journal of Inorganic Chemistry, 2011(8), 1201–1204.
[37] Ji, J., Li, P., Sang, S., Zhang, W., Zhou, Z., Yang, X., Dong, H., Li, G., & Hu, J. (2014). Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow. AIP Advances, 4(3), 031329.
[38] Cai, W.-F., Pu, K.-B., Ma, Q., & Wang, Y.-H. (2017). Insight into the fabrication and perspective of Dendritic Ag nanostructures. Journal of Experimental Nanoscience, 12(1), 319–337.
[39] Huang, H. J., Chang, H.-W., Lee, C.-Y., Shiao, M.-H., Chiu, Y.-L., Lee, P.-Y., & Lin, Y.-S. (2022). Effect of synthesis time on plasmonic properties of Ag dendritic nanoforests. IUCrJ, 9(3), 355–363.
[40] Dörner, L., Cancellieri, C., Rheingans, B., Walter, M., Kägi, R., Schmutz, P., Kovalenko, M. V., & Jeurgens, L. P. (2019). Cost-effective sol-gel synthesis of porous CuO nanoparticle aggregates with tunable specific surface area. Scientific Reports, 9(1).
[41] T. Mahalinggam, V. Dhansekaran, G. Ravi, Soonil Lee, J. P. Chu, Han-Jo Lim, Effect of deposition potential on the physical properties of electrodeposited CuO thin films, Journal of Optoelectronics and Advanced Materials Vol. 12, Iss. 6, pp. 1327-1332 (2010)
[42] Patel, M., Mishra, S., Verma, R., & Shikha, D. (2022). Synthesis of ZnO and CuO nanoparticles via Sol Gel Method and its characterization by using various technique. Discover Materials, 2(1).
[43] Sonia, S., Poongodi, S., Kumar, P. S., Mangalaraj, D., Ponpandian, N., & Viswanathan, C. (2015). Hydrothermal synthesis of highly stable CuO nanostructures for efficient photocatalytic degradation of organic dyes. Materials Science in Semiconductor Processing, 30, 585–591.
[44] Chen, K., Zhao, X., Zhang, X.-J., Zhang, W.-S., Wu, Z.-F., Wang, H.-Y., Han, D.-X., & Niu, L. (2021). Enhanced photocatalytic CO2 reduction by constructing an In2O3–CuO heterojunction with CuO as a co-catalyst. Catalysis Science & Technology, 11(8), 2713–2717.
[45] Nogueira, A. E., Oliveira, J. A., da Silva, G. T., & Ribeiro, C. (2019). Insights into the role of CuO in the CO2 Photoreduction Process. Scientific Reports, 9(1).
[46] Cheng, Z., Qiu, Y., Li, Z., Yang, D., Ding, S., Cheng, G., Hao, Z., & Wang, Q. (2019). Fabrication of silver dendrite fractal structures for enhanced second harmonic generation and surface-enhanced Raman scattering. Optical Materials Express, 9(2), 860.
[47] Cheng, Z.-Q., Li, Z.-W., Xu, J.-H., Yao, R., Li, Z.-L., Liang, S., Cheng, G.-L., Zhou, Y.-H., Luo, X., & Zhong, J. (2019). Morphology-controlled fabrication of large-scale dendritic silver nanostructures for catalysis and SERS applications. Nanoscale Research Letters, 14(1).
[48] Rivera-Rangel, R. D., Navarro-Segura, M. E., Arizmendi-Morquecho, A., & Sánchez-Domínguez, M. (2020). Electrodeposition of plasmonic bimetallic Ag-Cu nanodendrites and their application as surface-enhanced Raman spectroscopy (SERS) substrates. Nanotechnology, 31(46), 465605.
[49] Cheng, Z.-Q., Li, Z.-L., Luo, X., Shi, H.-Q., Luo, C.-L., Liu, Z.-M., & Nan, F. (2019). Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles. Applied Physics Letters, 114(1), 011901.
[50] Rudolph, W. W., Irmer, G., & Königsberger, E. (2008). Speciation studies in aqueous HCO3−–CO32−solutions. A combined Raman spectroscopic and thermodynamic study. Dalton Trans., (7), 900–908.

無法下載圖示 全文公開日期 2025/01/31 (校內網路)
全文公開日期 2025/01/31 (校外網路)
全文公開日期 2025/01/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE