簡易檢索 / 詳目顯示

研究生: 鍾智翔
JHIH-SIANG JHONG
論文名稱: 包覆型SRC柱箍筋耐震設計需求之構架試驗研究
Experimental Study on Concrete-encased Steel Column Frames for Seismic Design of Transverse Reinforcement
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 陳正誠
Cheng-Cheng Chen
周中哲
C.C CHOU
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 285
中文關鍵詞: 鋼骨鋼筋混凝土構造包覆型SRC柱箍筋構架試驗耐震設計
外文關鍵詞: SRC, concrete-encased, transverse reinforcement, confinement, ductility, frame
相關次數: 點閱:273下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣位於環太平洋地震帶,板塊活動頻繁,常造成地震之發生,並常有強烈的有感地震發生,且因地狹人稠之緣故,高層建築漸漸已成為未來之趨勢。一般高層建築均採用施工效率較高、韌性較佳之鋼骨結構,但因採用鋼骨結構之高層建築勁度較差、造價昂貴且耐火性差,一般較不適用於住宅建築,使得鋼骨構造之發展受到侷限。為改善鋼骨構造之缺點,結構工程上發展出鋼骨鋼筋混凝土構造(SRC),其不但保有鋼骨構造韌性佳之優點外,亦兼具RC構造勁度大、隔音、防爆效果及使用性較佳之優點。
本研究之對象主要為包覆型SRC結構,包覆型SRC結構具有眾多優點,在鋼骨四周以鋼筋混凝土包覆,可增加鋼骨之側向勁度、提升鋼骨抵抗受壓挫屈之能力、以及作為鋼骨之防火被覆,同時鋼骨亦可對四周包覆的混凝土產生圍束作用,提升其抗壓強度與韌性。由於其眾多優點,包覆型SRC近年來有漸受歡迎之趨勢。
過去的研究已指出,既有SRC規範對於柱箍筋耐震設計需求之計算公式,無法適當地考慮鋼骨對於混凝土圍束效應之影響,以及軸力對於箍筋需求量之影響。針對前述問題,過去的研究已針對I型、十字型與T型等包覆型SRC柱斷面,提出箍筋耐震設計用量之規範修正建議,並已透過一系列的構件試驗加以驗證。本研究之目的在於進一步透過大尺寸多跨構架試驗研究,觀察含包覆型SRC柱之構架耐震行為,並驗證前述構件層面之研究成果於構架結構之適用性。


Located on the Pacific Ring of Fire, Taiwan experiences numerous “feel able” earthquakes every year. Due to the dense population in Taiwan, high-rise buildings have become the trend for buildings of the future in Taiwan. High-rise buildings typically use steel structures due to the high ductility for seismic design and high construction efficiency. However, steel structures have low stiffness, high cost, and low fire resistance. Thus, steel structures are not suitable for residential buildings. Steel reinforced concrete (SRC) structures can improve the drawbacks of steel structures mentioned above. SRC structures not only preserve the high ductility advantage of steel structures but also have the advantages borrowed from reinforced concrete structures, i.e., high stiffness, reduced vibration and improved sound proof.

This research focuses on concrete-encased SRC structures. The concrete-encased SRC structures have several advantages compared to other types of structures. Concrete provides lateral support to the embedded structural steel member, thus increasing the buckling resistance of the steel member and hence increasing the ductility and energy dissipation capacity. Moreover, concrete serves as fireproof to the steel member. The steel member provides confinement to concrete, increasing compressive strength and ductility of concrete. Due to the advantages mentioned above, concrete-encased SRC structures have become more and more popular in recent years.

Previous research has indicated that existing Taiwanese SRC code provisions on the required amount of column transverse reinforcement for seismic design can not properly include the confinement effect from the steel member to concrete and does not consider the effect of axial load. The principal investigator of this proposal has proposed a design model to address this issue and has been verified by testing of large-scale members with various cross sectional shape of steel members, i.e., I shape, cross H shape, and T shape.

A large scale SRC frame structure will be constructed and tested in this research. The SRC frame will be designed with various cross-sectional shapes of steel members with the amount of column transverse reinforcement determined based on the proposed model. Pseudo-dynamic and cyclic loading testing will be carried out. The objectives of this research are to examine the seismic performance of a SRC frame designed based on the proposed model for the amount of column transverse reinforcement and to further verify the model for future code implementation.

目次 表次 III 圖次 V 摘 要 XX 第一章 緒 論 1 第一節 研究緣起與背景 1 第二節 研究方法 3 第二章 文獻回顧 5 第一節 文獻分析資料之蒐集與分析 5 第三章 試體規劃設計與製作 17 第一節 試體規劃 17 第二節 試體斷面設計 19 第三節 梁、柱圍束箍筋之材料性質說明 23 第四節 梁、柱圍束箍筋用量設計 26 第五節 試體製作 34 第六節 試體架設 39 第七節 量測系統與實驗程序 40 第四章 實驗結果討論與分析 43 第一節 試體材料強度試驗 43 第二節 試驗過程與紀錄 47 第三節 實驗數據分析 66 第四節 設計建議 89 第五章 結論與建議 91 第一節 結論 91 第二節 建議 92 附錄A 地震力豎向分配之計算結果 95 附錄B 基腳與夾具之設計與檢核 99 附錄C 構架試體設計圖 109 附錄D 構架試體施工組裝相關照片 137 附錄E 整體構架反覆載重試驗於各階段之照片 173 附錄F 第二樓層反覆載重試驗於各階段之照片 223 參考書目 255

參考書目
[1] ACI Committee 318, 2011. ACI 318-11/318R-11, Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute.
[2] AISC 360-10, Specification for Structure Steel Building. American Institute of Steel Structure.
[3] AISC LRFD 2005, Load and Resistance Factor Design Specification. American Institute of Steel Structure.
[4] AISC 341-10, Seismic Provisions for Structural Steel Buildings. American Institute of Steel Structure.
[5] AISC Design Examples Version 14.0. American Institute of Steel Structure.。
[6] Chen, CC., Suswanto B., Lin Y.J., Behavior and Strength of Steel Reinforced Concrete Beam-column Joint with Single Side Force Inputs. Journal of Constructional Steel Research, 65 (2009) 1569-1581.
[7] Chen C.C., Cheng C.L., Lin Y.J., Flexural Analysis and Design Methods for SRC Beam Sections with Complete Composite Action. Journal of the Chinese Institute of Engineers, Vol. 31, No. 2, pp. 215-229 (2008).
[8] Chen C.C., Sudibyo T, The Effect of Intermediate Stiffeners on Steel Reinforced Concrete Beams Behaviors. World Academy of Science, Engineering and Techonology 68(2012).
[9] Hoang T.T.T., Seismic Behavior of Steel Reinforced Concrete Columns with Axial Compressive Force, NTUST Master Thesis(2009).
[10] James M. Ricles, and Shannon D. Paboojian. (1994). Seismic performance of steel-encased composite columns. Journal of Structural Engineering.
[11] Hsu, H. L., Jan F. J. and Juang, J. L., Performance of composite members subjected to axial load and bi-axial bending. Journal of Constructional Steel Research(2009).
[12] Priestly, M. J. N., and Paulay, T.(1992). Seismic Design of Reinforced Concrete and Masonry Buildings.John Wiley & Sons,lnc.
[13] 翁正強、顏聖益、林俊昌(1998),「包覆型SRC柱鋼骨對混凝土圍束箍筋量之影響」,中國土木水利工程學刊,第十卷,第二期,193-204頁。
[14] 翁正強、李讓,(2005),「鋼骨鋼筋混凝土柱圍束鋼筋量之試驗與耐震設計」,碩士論文,國立台灣交通大學土木工程研究所,新竹。
[15] 陳正誠、沈家豪,(2010),「鋼骨鋼筋混凝土柱塑性轉角容量之研究」,碩士論文,國立臺灣科技大學營建工程研究所,台北。
[16] 陳正誠、蔣迪,(2005),「包覆型SRC柱軸向受力行為」,碩士論文,國立臺灣科技大學營建工程研究所,台北。
[17] 陳正誠、黃氏秋水,(2009),「含軸壓力鋼骨鋼筋混凝土柱之耐震行為」,碩士論文,國立臺灣科技大學營建工程研究所,台北。
[18] 陳正誠、詹鎧慎,(2012),「含軸壓力包覆型鋼骨鋼筋混凝土柱之撓曲行為」,行政院國家科學委員會成果報告,NSC 99-2221-E-011-038。
[19] 陳正誠、毛宗傑,(2006),「SRC柱混凝土與鋼骨交互影響之探討」,碩士論文,國立臺灣科技大學營建工程研究所,台北。
[20] 內政部建築研究所,(2004),「鋼骨鋼筋混凝土構造設計規範與解說」。
[21] 內政部建築研究所,(2011),「鋼骨鋼筋混凝土構造設計規範與解說」。
[22] 陳正誠,(2005),「研發成果申請專利揭露書」,國立臺灣科技大學營建工程研究所,台北。
[23] 中華民國鋼結構協會,(2012),「鋼結構設計手冊(極限設計法)」。

QR CODE