簡易檢索 / 詳目顯示

研究生: 洪郡澤
Chun-Tse Hung
論文名稱: 優化貨架利用率及分配於智動化揀貨系統之研究
Optimizing Pod Utilization and Allocation in Robotic Mobile Fulfillment System
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
王孔政
Kung-Jeng Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 57
中文關鍵詞: RMFS揀選訂單分配貨櫃裝載問題多元啟發式
外文關鍵詞: RMFS, Pick Order Assignment, Container Loading Problem, Metaheuristics
相關次數: 點閱:304下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這項研究的著重在於優化智動化揀貨系統(RMFS),以實現成本降低。透過應用演算法來改善裝載過程,並使用多元啟發式來確定每個庫存保管單位(SKU)的最佳位置。
    我們在這項研究中解決的一個主要問題是貨櫃裝載問題(CLP),這是一個存在了許多年的NP-Hard問題。我們採取的方法有兩個面向,首先,最大化空間利用率,從而減少插槽的浪費;其次,根據整體訂單數量為每個SKU指定策略位置。這兩步方法使我們能夠計算出有效運作所需的POD(隨選移動儲存單元)的總數。
    此研究是通過融合現實世界的觀察並調整實證數據來模擬我們的實驗的實際情境。此實驗的限制也反映了現實世界的約束,包括旋轉方向和不允許在同一插槽中放置不同的SKU。這些因素使我們的研究更能反映實際倉庫環境所面臨的真實挑戰。
    這項研究的結果顯示,我們的方法在確定滿足訂單要求所需的POD數量方面是有效的,從而幫助倉庫將多餘的POD放置的成本降至最低。通過提供一種準確預測所需POD數量的方法,我們的研究為改善倉庫效率和降低運營成本的廣泛論述做出了貢獻。我們相信,這些見解及其相關策略可為希望優化其RMFS操作並實現顯著成本降低的企業提供寶貴的資源。


    This research focuses on optimizing Robotic Mobile Fulfillment Systems (RMFS) for cost reduction. The methodology enhances the loading process by applying advanced algorithms and metaheuristics to identify optimal locations for each Stock Keeping Unit (SKU).
    One of the central issues we address in this study is the Container Loading Problem (CLP), an NP-Hard problem that has persisted for many years. The approach undertaken here is twofold: firstly, to maximize space utilization, thereby reducing the wastage of slots, and secondly, to strategically assign locations for each SKU based on the overall order quantity. This two-step methodology enables us to calculate the total number of PODs (Portable On Demand storage units) required for efficient operations.
    This research was conducted by incorporating real-world observations and adjusting empirical data to simulate a practical context for our experiment. This experiment’s constraints also reflect real-world limitations, including the direction of rotation and the restriction against placing different SKUs in the same slot. These factors make our study more reflective of the challenges faced in warehouse environments.
    This research demonstrates that our method effectively identifies the accurate number of PODs required to fulfill the order requirements, thus helping warehouses minimize the cost of surplus POD placements. By providing a means to anticipate the required number of PODs accurately, our study contributes to the wider discourse on improving warehouse efficiency and decreasing operational costs. We believe these insights and the associated strategies presented here can be a valuable resource for businesses looking to optimize their RMFS operations and achieve significant cost reductions.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 OBJECTIVES 3 1.3 RELEVANCE OF PAST SOLUTIONS TO CURRENT CLP CHALLENGES 3 1.4 SCOPE AND LIMITATIONS 3 1.5 ORGANIZATIONS OF THESIS 4 CHAPTER 2 LITERATURE REVIEW 5 2.1 ROBOTIC MOBILE FULFILLMENT SYSTEM 5 2.2 CONTAINER LOADING PROBLEM 6 2.3 COMMON SOLUTIONS IN THE PAST 7 2.4 METAHEURISTICS 8 CHAPTER 3 METHODOLOGY 11 3.1 DIMENSIONALITY REDUCTION WITH DBSCAN CLUSTERING 12 3.2 MATHEMATICAL FORMULATION FOR THE CLP 12 3.3 HEURISTICS APPROACH FOR THE LOADING PROCESS 16 3.4 APPLICATION OF GENETIC ALGORITHM IN CLP 17 3.5 APPLICATION OF PARTICLE SWARM OPTIMIZATION IN CLP 21 3.6 EVALUATING AND VALIDATING FITNESS 24 CHAPTER 4 RESULTS AND DISCUSSION 25 4.1 DATA DESCRIPTION 25 4.2 DATA PREPARATION 25 4.3 PARAMETER SETTING 27 4.4 RESULTS OF COMPUTATIONAL ANALYSIS 28 4.5 REAL CASE STUDY 33 CHAPTER 5 CONCLUSION & FUTURE WORK 35 5.1 CONCLUSION 35 5.2 FUTURE RESEARCH 36 REFERENCES 37 APPENDIX 41

    1. Statistics. Ecommerce Share of Retail Sales (2021–2026). 2021; Available from: oberlo.com/statistics/ecommerce-share-of-retail-sales#:~:text=That%20is%20to%20say%20that,share%20in%20just%20one%20year.
    2. A. Martin, R.N., U. Inamdar, M. Brickell, R. Afzal, I. N. Sharma, A new approach to warehouse automation. 2021.
    3. Shetty, N., B. Sah, and S.H. Chung, Route optimization for warehouse order picking operations via vehicle routing and simulation. SN Applied Sciences, 2020. 2(2).
    4. Yuan, R., et al., Storage Assignment Optimization in Robotic Mobile Fulfillment Systems. Complexity, 2021. 2021: p. 1-11.
    5. Zhu, L. and H. Li, Workstation layout strategies in Robotic Mobile Fulfillment Systems considering carbon emissions. Cleaner Logistics and Supply Chain, 2022. 4.
    6. Zhang, Z., et al., Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop. Computers & Industrial Engineering, 2021. 158.
    7. da Costa Barros, Í.R. and T.P. Nascimento, Robotic Mobile Fulfillment Systems: A survey on recent developments and research opportunities. Robotics and Autonomous Systems, 2021. 137: p. 103729.
    8. Yang, P., G. Jin, and G. Duan, Modelling and analysis for multi-deep compact robotic mobile fulfilment system. International Journal of Production Research, 2022. 60(15): p. 4727-4742.
    9. Yang, X., et al., Joint optimization of order sequencing and rack scheduling in the robotic mobile fulfilment system. Computers & Operations Research, 2021. 135: p. 105467.
    10. Keung, K.L., C.K.M. Lee, and P. Ji. Mobile Robots Charging Assignment Problem with Time Windows in Robotic Mobile Fulfilment System. in 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2019.
    11. Jiao, G., H. Li, and M. Huang, Online joint optimization of pick order assignment and pick pod selection in robotic mobile fulfillment systems. Computers & Industrial Engineering, 2023. 175: p. 108856.
    12. Yuan, R., H. Wang, and J. Li. The Pod Assignment Model and Algorithm in Robotic Mobile Fulfillment Systems. in 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). 2019.
    13. Wäscher, G., H. Haußner, and H. Schumann, An improved typology of cutting and packing problems. European Journal of Operational Research, 2007. 183(3): p. 1109-1130.
    14. Baker, B.S. and J.S. Schwarz, Shelf Algorithms for Two-Dimensional Packing Problems. SIAM Journal on Computing, 1983. 12(3): p. 508-18.
    15. Coffman, E.G., J.Y.T. Leung, and D.W. Ting, Bin packing: Maximizing the number of pieces packed. Acta Informatica, 1978. 9(3): p. 263-271.
    16. Hajlaoui, Y., A. Jaoua, and S. Layeb, Deep reinforcement learning for solving the single container loading problem. Engineering Optimization, 2022. 55: p. 1-17.
    17. Kurpel, D.V., et al., The exact solutions of several types of container loading problems. European Journal of Operational Research, 2020. 284(1): p. 87-107.
    18. Zhang, D., et al., Multi-strategy hybrid heuristic algorithm for single container weakly heterogeneous loading problem. Computers & Industrial Engineering, 2022. 170: p. 108302.
    19. Gajda, M., et al., An optimization approach for a complex real-life container loading problem. Omega, 2022. 107: p. 102559.
    20. Kang, K., I. Moon, and H. Wang, A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem. Applied Mathematics and Computation, 2012. 219(3): p. 1287-1299.
    21. Jamrus, T. and C.-F. Chien, Extended priority-based hybrid genetic algorithm for the less-than-container loading problem. Computers & Industrial Engineering, 2016. 96: p. 227-236.
    22. Miranda, G., A. Lančinskas, and Y. González, Single and multi-objective genetic algorithms for the container loading problem, in Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2017, Association for Computing Machinery: Berlin, Germany. p. 291–292.
    23. Kuo, R.J., P.-C. Ho, and F.E. Zulvia, Application of metaheuristics algorithm on a multi-objective container loading problem considering container’s utilization and vehicle’s balance. Applied Soft Computing, 2023. 143: p. 110417.
    24. Wurman, P.R., R. D'Andrea, and M. Mountz. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. in AI Magazine. 2008.
    25. Xiao, J. and L. Zheng, A correlated storage location assignment problem in a single-block-multi-aisles warehouse considering BOM information. International Journal of Production Research, 2010. 48(5): p. 1321-1338.
    26. Enright, J.J. and P.R. Wurman. Optimization and coordinated autonomy in mobile fulfillment systems. in Workshops at the twenty-fifth AAAI conference on artificial intelligence. 2011. Citeseer.
    27. Kim, H.J., C. Pais, and Z.J.M. Shen, Item Assignment Problem in a Robotic Mobile Fulfillment System. IEEE Transactions on Automation Science and Engineering, 2020. 17(4): p. 1854-1867.
    28. Jane, C.-C. and Y.-W. Laih, A clustering algorithm for item assignment in a synchronized zone order picking system. European Journal of Operational Research, 2005. 166(2): p. 489-496.
    29. Wang, B., X. Yang, and M. Qi, Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations. Flexible Services and Manufacturing Journal, 2022: p. 1-39.
    30. Dyckhoff, H., A typology of cutting and packing problems. European Journal of Operational Research, 1990. 44(2): p. 145-159.
    31. Phongmoo, S., et al., Artificial Bee Colony Algorithm with Pareto-Based Approach for Multi-Objective Three-Dimensional Single Container Loading Problems. Applied Sciences, 2023. 13: p. 6601.
    32. Araya, I., K. Guerrero, and E. Nuñez, VCS: A new heuristic function for selecting boxes in the single container loading problem. Computers & Operations Research, 2017. 82.
    33. Alonso, M.T., et al., Mathematical models for Multi Container Loading Problems with practical constraints. Computers & Industrial Engineering, 2019. 127: p. 722-733.
    34. Huang, Y.-H., F.J. Hwang, and H.-C. Lu, An effective placement method for the single container loading problem. Computers & Industrial Engineering, 2016. 97: p. 212-221.
    35. Martello, S., D. Pisinger, and D. Vigo, The Three-Dimensional Bin Packing Problem. Operations Research, 1998. 48.
    36. Bayraktar, T., F. Ersöz, and C. Kubat, Effects of memory and genetic operators on Artificial Bee Colony algorithm for Single Container Loading problem. Applied Soft Computing, 2021. 108: p. 107462.
    37. Liu, J., et al., A novel hybrid tabu search approach to container loading. Computers & Operations Research, 2011. 38(4): p. 797-807.
    38. Ester, M., et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. 1996, AAAI Press: Portland, Oregon. p. 226–231.
    39. Kafri, P., et al., Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife, 2016. 5.

    無法下載圖示
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE