簡易檢索 / 詳目顯示

研究生: 王德弘
Te-Hung Wang
論文名稱: 多載波分碼多重接取系統中結合天線選擇與功率分配之方法
Combination of Antenna Selection and Power Allocation for MC-CDMA
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair Lay
洪賢昇
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 60
中文關鍵詞: 多載波分碼多重接取系統water-filling演算法天線選擇多重輸出入空間時間區塊碼功率分配
外文關鍵詞: water-filling algorithm
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中,我們針對具有多重輸出入天線陣列之多載波分碼多重接取系統,提出一種結合功率分配及天線選擇的方法。此方法能在具有頻率選擇性之瑞雷衰減通道中,具體有效地提昇位元錯誤率之效能。多重輸出入天線陣列配合空間時間區塊碼之使用能增加系統之空間分集階數,而多載波分碼多重接取系統則能藉由頻域擴展及多載波調變之使用,使系統具有頻率分集之特性及多重接取之能力。我們所提出之方法結合這些系統之優點,並且經由在每一個子載波上選出具有較大通道增益之發射天線,並進而經將有限的發射功率適當地分配在每一個子載波所選出之發射天線上,而達到提昇整體系統效能之目的。

我們提出的方法首先在每個子載波上選出具有最大弗羅賓尼斯(Frobenius)範數之發射天線,同時利用注水(water-filling)演算法將發射功率適切地分配到每個子載波上,使整體效能有效地提昇。天線選擇演算法乃是以範數之大小作為選擇之依據,選出每個子載波上的最佳天線,其運算執行在空間分集維度。另一方面,功率分配則是作用在頻域分集維度,其目的在使通道容量最大化。系統效能可以經由適當地結合以上這兩種方法而得到有效的改善。將有限的發射功率分配到各個子載波上以使通道容量最大化,乃是限制最佳化問題,我們可藉由拉格朗治乘數法來求解。模擬結果顯示我們所提出的方法使系統效能得到具體有效的提昇。


In this thesis, we present a combined scheme of power allocation and antenna
selection to improve the bit error rate (BER) performance for multiple input
multiple output (MIMO) multicarrier code division multiple access (MC-CDMA)
systems over frequency selective Rayleigh fading channels. MIMO configurations
with space-time block code (STBC) technology can enhance system performance
by improving the spatial diversity order, while MC-CDMA systems provide frequency
diversity and multiple access capability by frequency domain spreading
and multicarrier modulation. The proposed scheme combines the advantages of
these technologies by appropriately selecting the transmit antennas with higher
channel gain and allocating the limited transmission power resources among them
to improve the overall system performance.
The scheme we proposed is to first select the best transmit antenna with
highest channel Frobenius norm for each subcarrier. Then, the transmission power
is allocated among these subcarriers by water-filling (WF) algorithm to improve
the overall system performance. The antennas selection is performed in spatial
diversity dimension on each subcarrier employing the norm-based criterion, with
the power being allocated in frequency diversity domain to maximize the channel
capacity across the subcarriers. The power allocation among the subcarriers is
a constrained optimization problem that can be solved by using the Lagrange
multiplier method. Simulation results show that the new scheme can provide
considerable performance gain.

1 INTRODUCTION 1 2 REVIEW OF PREVIOUS WORKS 4 2.1 MIMO System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 System Capacity of MIMO Channel [10, 11] . . . . . . . . . 6 2.2 Space Time Block Codes . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Alamouti Space-Time Code [4] . . . . . . . . . . . . . . . . 11 2.2.2 Orthogonal Space Time Block Codes . . . . . . . . . . . . . 14 2.3 MC-CDMA System [3, 14] . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 MIMO MC-CDMA System . . . . . . . . . . . . . . . . . . . . . . . 26 3 A COMBINED SCHEME OF ANTENNA SELECTION AND POWER ALLOCATION FOR MC-CDMA SYSTEMS 32 3.1 Antenna Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.1 Simulations and Discussion . . . . . . . . . . . . . . . . . . 37 3.2 Power Allocation Among the Subcarriers . . . . . . . . . . . . . . . 44 3.2.1 The Water-filling Algorithm [24, 25] . . . . . . . . . . . . . . 48 3.2.2 Simulations and Discussion . . . . . . . . . . . . . . . . . . 49 4 CONCLUSIONS 57 REFERENCE 59

[1] T. S. Rappaport, Wireless Communications. Prentice Hall PTR, 1996.
[2] J. Proakis, Digital Communication. McGraw Hill, New York, 1995.
[3] S. Hara and R. Prasad, “Overview of multi-carrier CDMA,” IEEE Commun.
Mag., vol. 35 no. 12, pp. 126-133, Dec. 1997.
[4] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct.
1998.
[5] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes from
orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456V1467,
July 1999.
[6] D. Gore and A. Paulraj, “Space-time block coding with optimal antenna
selection,” IEEE Conference on Acoustics, Speech, and Signal Processing, vol.
4, pp. 2441-2444 May 2001.
[7] D.A. Gore and A.J. Paulraj, “MIMO antenna subset selection with spacetime
coding,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp.
2580 - 2588, Oct. 2002.
[8] X. Ren, S. Zhou, and Z. Zhou, “Multicarrier Transmit Diversity Scheme with
Antenna Selection for MC-CDMA,” IEICE Trans. Commun., Vol. E87-B,
No.8 August 2004.
[9] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,” IEEE
Commun. Mag. pp.68-73, Oct. 2004.
[10] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,” Wireless Pers. Commun.,
vol. 6, pp. 311-335, 1998.
[11] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions
on Telecommunications, vol. 10, no. 6, Nov./Dec. 1999, pp. 585-595.
[12] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[13] C. Shannon, “A mathematical theory of communication,” Bell Lab Tech. J.,
27, pp. 379-423, 623-656, July and October 1948.
[14] R. Nee and R. Prasad, OFDM for Wireless Multimedia Communications.
Artech House, 2000.
[15] M. Z. Win and J. H. Winters, “Analysis of hybrid selection/maximal ratio
combining in Rayleigh fading,” IEEE Trans. Commun., vol. 47, pp. 1773-
1776, Dec. 1999.
[16] A. Molisch, M. Win, and J. H. Winters “Capacity of mimo systems with
antenna selection,” in Proc. IEEE Int. Contr. Conf., Helsinki, Finland, pp.
570-574, 2001.
[17] R. S. Blum and J. Winters, “On optimum MIMO with antenna selection,”
IEEE Commn. Letters, vol. 6, pp. 322-324, Aug.2002.
[18] R. Nabar, D. Gore, and A. Paulraj, “Optimal selection and use of transmit
antennas in wireless systems,” in Proc. ICT, Acapulco, Mexico, 2002.
[19] D. Gore and A. Paulraj, “Statistical MIMO antenna sub-set selection with
space-time coding,” in Proc. IEEE Int. Conf. Communications, vol. 1, pp.
641-645, 2002.
[20] D. Gore, R. U. Nabar, and A. Paulraj, “Selecting an optimal set of transmit
antennas for a low rank matrix channel,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Turkey, pp. 2785-2788, 2000.
[21] A. Ghrayeb and T. M. Duman, “Performance analysis of MIMO system with
antenna selection over quasi-static fading channels,” IEEE Trans. Vechicular
Technonlogy, vol. 52, no. 2, pp. 281-288, March 2003.
[22] Z. Chen, J. Yuan, B. Vucetic, and Z. Zhou, “Performance of Alamouti scheme
with transmit antenna selection,” IEE Electronics Letters, vol. 39, no. 23,
pp.1666-1668, 13 Nov. 2003.
[23] C. Schlegel, S. Roy, P.D. Alexander, and Z. Xiang, “Multiuser projection
receivers, ”IEEE J. Sel. Areas Comm., vol. 14, no. 8, pp. 1610-1618, Oct.
1996.
[24] T. Cover and J. Thomas, Elements of Information Theory. Wiley, New York,
1991.
[25] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless
Communications. Cambridge University Press, 2003.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)

QR CODE