簡易檢索 / 詳目顯示

研究生: 黃珮中
Pei-Chung Huang
論文名稱: 結合HDR成像及RADIANCE以模擬都市環境中 室內自然光的新方法
A Novel Method Combining HDR Imaging and RADIANCE for Indoor Daylight Simulation in Urban Context
指導教授: 邱韻祥
Yun-Shang Chiou
口試委員: 江維華
Wei-Hwa Chiang
鄭政利
Cheng-Li Cheng
蔡欣君
Shin-Jyun Tsaih
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: RADIANCEHDR ImagingTregenza PatchesShadow-ring
外文關鍵詞: RADIANCE, HDR Imaging, Tregenza Patches, Shadow-ring
相關次數: 點閱:182下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lighting is the most essential element of building energy consumption. Aesthetically
    and sustainably good lighting design requires the combination of maximizing the daylight
    availability and minimizing artificial lighting, which in turn greatly reduce the energy
    consumption. Lighting simulation can be an effective method to predict the outcome of a
    design. A quick and accurate simulation method becomes a necessity for designers and
    architects. The objective of this thesis is to develop and validate a novel method for indoor
    daylight simulation with commercially available tools. This method incorporates and strings
    several techniques and devices that has been scientifically proven or validated, such as the
    capturing, processing and analyzing of high dynamic range (HDR) images, the shadow-ring
    apparatus, the method of acquiring material properties, and RADIANCE simulation tool.
    The aim of this novel method is to provide a quick and accurate tool for both the architectural
    designers and researchers.
    The results indicate the significance of utilizing correct method of correcting the sky
    distribution and how of material properties are acquired, which may improve the simulation
    outcome by maximum of 29% and 20%, respectively. Most importantly, the method of
    simulating with skydome image and virtual surroundings proves to be effective, improving
    the performance of simulations from 5-23%, depending on the surrounding contexts’
    complexity. The proposed simulation method is plausible.


    Lighting is the most essential element of building energy consumption. Aesthetically
    and sustainably good lighting design requires the combination of maximizing the daylight
    availability and minimizing artificial lighting, which in turn greatly reduce the energy
    consumption. Lighting simulation can be an effective method to predict the outcome of a
    design. A quick and accurate simulation method becomes a necessity for designers and
    architects. The objective of this thesis is to develop and validate a novel method for indoor
    daylight simulation with commercially available tools. This method incorporates and strings
    several techniques and devices that has been scientifically proven or validated, such as the
    capturing, processing and analyzing of high dynamic range (HDR) images, the shadow-ring
    apparatus, the method of acquiring material properties, and RADIANCE simulation tool.
    The aim of this novel method is to provide a quick and accurate tool for both the architectural
    designers and researchers.
    The results indicate the significance of utilizing correct method of correcting the sky
    distribution and how of material properties are acquired, which may improve the simulation
    outcome by maximum of 29% and 20%, respectively. Most importantly, the method of
    simulating with skydome image and virtual surroundings proves to be effective, improving
    the performance of simulations from 5-23%, depending on the surrounding contexts’
    complexity. The proposed simulation method is plausible.

    Abstract ....................................................................................................................................... i Acknowledgements .................................................................................................................. iii Table of Contents ....................................................................................................................... v List of Figures ............................................................................................................................ x List of Tables ........................................................................................................................... xii Chapter 1 Introduction ........................................................................................................... 1 1.1 Background and Motivation ................................................................................. 1 1.2 Objective and Research Outcomes ....................................................................... 2 1.3 Research Approach ............................................................................................... 3 Acquisition of 1.3.1 daylight information ...................................................... 3 1.3.2 Description of material properties ......................................................... 4 1.3.3 Implementation of the virtual model of surrounding geometry and surface properties ................................................................................. 4 1.3.4 Application of alternative simulation procedure ................................... 4 1.4 Chapter Overview ................................................................................................. 5 Chapter 2 Literature Review .................................................................................................. 7 2.1 Acquisition of Daylight Luminance Distribution ................................................. 7 2.1.1 Image Based Rendering (IBR) and sky model ...................................... 7 2.1.2 HDR capture of the sun and sky ............................................................ 8 2.1.3 Shadow-ring ........................................................................................... 9 2.1.4 HDR image assembly and corrections ................................................... 9 2.1.5 Tregenza patches ................................................................................. 10 2.2 Acquisition of Material Properties ..................................................................... 10 2.2.1 Material property description .............................................................. 10 2.3 RADIANCE Simulation ..................................................................................... 11 2.3.1 RADIANCE simulation tool ............................................................... 11 2.3.2 rtcontrib ............................................................................................... 11 Chapter 3 Experiment Methodology ................................................................................... 13 3.1 Experiment Settings ............................................................................................ 13 3.1.1 Scale model .......................................................................................... 13 3.1.2 Phase 1: the effect of contextual complexity in daylighting simulations ........................................................................................................... 16 3.1.3 Phase 2: the efficacy of virtual representation of the real-world context ........................................................................................................... 18 3.1.3.1 Part I ..................................................................................... 18 3.1.3.2 Part II .................................................................................... 20 3.2 Applications of HDRi Technique ....................................................................... 20 3.2.1 View I: HDR capture of the model (interior) for luminance distribution ........................................................................................................... 21 3.2.2 View II and III: direct HDR capture of daylight information with fisheye lens ........................................................................................ 22 3.2.2.1 View II: fenestration (vertical) luminance distribution ........ 23 3.2.2.2 View III: skydome (horizontal) luminance distribution ....... 24 3.3 RADIANCE Simulation ..................................................................................... 25 3.3.1 Scene descriptions ............................................................................... 26 3.3.1.1 Material properties ................................................................ 26 3.3.1.1.1 Simple materials ........................................ 27 3.3.1.1.2 Complex materials ..................................... 28 3.3.1.2 Scene geometries .................................................................. 29 3.3.1.3 Daylight luminance distribution ........................................... 30 3.3.2 Running RADIANCE .......................................................................... 30 3.4 Evaluation Methods ............................................................................................ 32 3.5 Special Notes ...................................................................................................... 33 Chapter 4 Empirical Evaluation and Validation .................................................................. 35 4.1 Indirect RGB Reflectance (IRR) vs. Direct Spectral Reflectance (DSR) .......... 36 4.1.1 Hypothesis of research problem .......................................................... 36 4.1.2 Overall comparisons ............................................................................ 36 4.1.3 By-quadrants comparisons .................................................................. 38 4.1.4 Summary of findings ........................................................................... 38 4.2 Geometric Correction Factor (GCF) vs. Localized Correction Factor (LCF) .... 39 4.2.1 Hypothesis of research problem .......................................................... 39 4.2.2 Overall comparisons ............................................................................ 40 4.2.3 By-quadrants comparisons .................................................................. 41 4.2.4 Summary of findings ........................................................................... 41 4.3 Phase 1: The Effect of Contextual Complexity in Daylighting Simulations ...... 41 4.3.1 Hypothesis of research problem .......................................................... 41 4.3.2 Overall comparisons ............................................................................ 43 4.3.3 By-quadrants comparisons .................................................................. 44 4.3.4 Summary of findings ........................................................................... 44 4.4 Phase 2: The Efficacy of Virtual Representation of Real-World Context ......... 45 4.4.1 Hypothesis of research problem .......................................................... 45 4.4.2 Overall comparisons ............................................................................ 48 4.4.3 By-quadrants comparisons .................................................................. 48 4.4.4 Summary of findings ........................................................................... 49 4.5 Validation: Efficacy of Virtual Context (VC). Phase 1 vs. Phase 2 .................. 50 4.5.1 Hypothesis of research problem .......................................................... 50 4.5.2 Overall comparisons ............................................................................ 51 4.5.3 Summary of findings ........................................................................... 51 4.6 Preliminary Conclusions ..................................................................................... 51 Chapter 5 Conclusion and Discussion ................................................................................. 53 5.1 Summary of Findings ......................................................................................... 53 5.2 Future Works ...................................................................................................... 54 Bibliography ............................................................................................................................ 57 Appendix 01a Shadow-Ring .................................................................................................. 61 A1a.1 Diagrams and Dimensions of Shadow-Ring .................................................. 61 A1a.2 Shadow-Ring Sliding Chart ........................................................................... 62 Appendix 01b Geometric Correction Factor ......................................................................... 63 A1b.1 Excel Spreadsheet .......................................................................................... 63 A1b.2 Formula for Correction .................................................................................. 64 Appendix 01c Localized Correction Factor ........................................................................... 67 Appendix 02 RADIANCE Commands .................................................................................. 69 A2.1 Main Procedure ................................................................................................ 69 A2.2 Predefined Files ............................................................................................... 70 A2.2.1 Material properties material.mat (indirect RGB reflectance) ..... 70 A2.2.2 Material properties material.mat (direct spectral reflectance) .... 71 A2.2.3 Sky description sky.rad .................................................................. 72 A2.2.4 View file viewfile.vf ................................................................... 72 A2.2.5 Option file option.opt ................................................................... 73 A2.2.6 BASH file apply_tresamp.bash ........................................................... 73 A2.2.7 Distribution file distribution.dat ............................................ 73 Appendix 03 Comprehensive Simulation Data ..................................................................... 75 A3.1 Indirect RGB Reflectance (IRR) vs. Direct Spectral Reflectance (DSR) ....... 75 A3.2 Geometric Correction Factor (GCF) vs. Localized Correction Factor (LCF) . 77 A3.3 Phase 1: The Effect of Contextual Complexity in Daylighting Simulations ... 79 A3.4 Phase 2: The Efficacy of Virtual Representation of Real-World Context ....... 80 A3.5 Validation: Efficacy of Virtual Context (VC), Phase 1 vs. Phase 2 ................ 82

    Adobe (2009). Content-Aware Fill. Retrieved 2012, from Adobe:
    http://www.adobe.com/technology/projects/content-aware-fill.html
    Arnott, W. P. (2012). Class note of ATMS360. Retrieved 2012, from ATMS360:
    http://www.patarnott.com/atms360/pdf_atms260/solareqns.pdf
    Bodart, M., de Penaranda, R., Deneyer, A., & Flamant, G. (2008). Photometry and
    colorimetry characterisation of materials in daylighting evaluation tools. Building and
    Environment , 43 (12), 2046-2058.
    Chiou, Y.-S., & Mai, T. Q. (2013). A Portable System for On-Site Measurement of Indoor
    Luminous Properties for High-Fidelity Lighting Simulation. 13th Conference of
    International Building Performance Simulation Association, (pp. 3376-3383).
    Chambery, France.
    CIE—Commission Internationale de l’Eclairage. (1994). Guide to Recommended Practice of
    Daylight Measurement. CIE: Wien , pp. 58-58.
    de Oliveira, A. P., Machado, A. J., & Escobedo, J. F. (2002). A New Shadow Ring Device
    for Measuring Diffuse Solar Radition at the Surface. Journal of Atmospheric and
    Oceanic Technology , 19 (5), 698-708.
    Drummond, A. J. (1964). Comments on "Sky Radiation Measurement and Corrections".
    Journal of Applied Meteorology , 3 (6), 810-811.
    Inanici, M. (2009). Application of Image Based Rendering in Lighting Simulation:
    Development and Evaluation of Image Based Sky Models. Building Simulation , 7,
    27-30.
    Inanici, M. (2010). Evaluation of High Dynamic Range Image Based Sky Models in Lighting
    Simulation. Leukos , 7 (2), 69-84.
    Jacobs, A. (2010). Understanding rtcontrib.
    Kipp & Zonen. (2004). CM121 B/C Shadow Ring Instruction Manul. Retrieved 2013, from
    Kipp & Zonen: Solar Radiation Measurement:
    http://www.kippzonen.com/Download/46/CM-121-B-C-Shadow-Ring-Manual
    Konica Minolta. (2012). CM-2600D Spectrophotometer. Retrieved 2012, from Konica
    Minolta:
    http://www.konicaminolta.com/instruments/download/catalog/color/pdf/cm2600d_cat
    alog_eng.pdf
    Kumaragurubaran, V., & Inanici, M. (2013). Hdrscope: high dynamic range image
    processing toolkit for lighting simulations and analysis. 13th International Building
    Performance Simulation Association (IBPSA) Conference, (pp. 3400-3407).
    Chambery, France.
    Larson, G. W., Shakespeare, R., Ehrlich, C., Mardaljevic, J., Phillips, E., & Apian-Bennewitz,
    P. (1998). Rendering with Radiance: The Art and Science of Lighting Visualization.
    San Francisco, CA: Morgan Kaufmann Publishers.
    LeBaron, B. A., Michalsky, J. J., & Perez, R. (1990). A Simple Procedure for Correcting
    Shadowband Data for All Sky Conditions. Solar Energy , 44 (5), 249-256.
    Logicol S.r.l. (2012). OpenRGB. Retrieved 2013, from Logicol:
    http://www.logicol.com/open/openrgb_install_v0210.exe
    Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., & Myszkowski, K. (2010).
    High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting.
    Morgan Kaufmann Publishers.
    Reinhart, C. F., & Herkel, S. (2000). The simulation of annual daylight illuminance
    distributions—a state-of-the-art comparison of six RADIANCE-based methods.
    Energy and Buildings , 32 (2), 167-187.
    Robinson, N., & Stoch, L. (1964). Sky Radiation Measurement and Correction. Journal of
    Applied Meteoroogy , 3 (2), 179-181.
    Stumpfel, J. (2004). HDR Lighting Capture of Sky and Sun. California Institude of
    Technology.
    Stumpfel, J., Jones, A., Wenger, A., Tchou, C., Hawkins, T., & Debevec, P. (2004). Direct
    HDR Capture of the Sun and Sky. Proceedings of the 3rd international conference on
    Computer graphics, virtual reality, visualisation and interaction in Africa (pp. 145-
    149). ACM.
    Thevenard, D., & Haddad, K. (2006). Ground reflectivity in the context of building energy
    simulation. Energy and buildings , 38 (8), 972-980.
    Tregenza, P. R. (1987). Subdivision of the Sky Hemisphere for Luminance Measurements.
    Lighting Research and Technology , 19 (1), 13-14.
    Ward, G. (2012). Applications of the rtcontrib Program with an Emphasis on the Three-phase
    Method for Annual Simulations. 11th International Radiance Workshop .
    Copenhagen, Denmark.
    Ward, G. (2005a). Photosphere. Retrieved 2012, from Anyhere Software: www.anyhere.com
    Ward, G. (1997). RADIANCE Reference Manual. Retrieved 2013, from RADIANCE:
    http://radsite.lbl.gov/radiance/refer/ray.html
    Ward, G. (2005b). Radiance's New rtcontrib Program. 4th International Radince Workshop .
    Montreal, Canada.

    QR CODE