簡易檢索 / 詳目顯示

研究生: 賴彥臻
Yan-Zhen Lai
論文名稱: 高動態影像轉換與立體器物色差評估技術之研究
A study of HDR image conversion and color difference evaluation of 3D objects
指導教授: 孫沛立
Pei-Li Sun
口試委員: 溫照華
Chao-Hua Wen
陳鴻興
Hung-Shing Chen
林宗翰
Tzung-Han Lin
孫沛立
Pei-Li Sun
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 色差彩色 3D 列印高動態範圍視覺差異外貌量測影像差異
外文關鍵詞: color difference, color 3D printing, HDR, visual difference, appearance measurement, image difference
相關次數: 點閱:312下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著3D列印的技術逐漸成熟,市場上已經販售許多單色3D列印的設備,全彩3D列印也是指日可待。由於彩色3D列印須要經過固化劑浸泡以及表面拋光等後加工使成品的硬度提高、表面光滑化。但這會使得成品表面的色澤不一致。立體物件的表面無法用色差儀直接量測,因此須要開發評估立體物件色差的技術。為此,本研究設計了一系列的心理物理實驗評估視覺色差,觀測的對象有實體物件與HDR影像。本研究探討了低動態範圍(LDR)到高動態範圍(HDR)偏好的階調調變模式、以及使用相機拍攝不同曝光之LDR影像融合成HDR影像的優化模式。從立體樣本上討論了虛擬單色簡單模型、實體複雜模型以及影像化的複雜模型。最後將視覺色差實驗的結果用於修正既有的色差公式,並建立影像化後的立體物件色差評估模式,找出單一數值的綜合性色差評價指標。
    結果表示最好的LDR到HDR階調調變模式是使用50%的屈膝曲線線性調整,本研究也將此應用到建立虛擬模型之影像上。本研究使用了3階多項式迴歸,並且在對數曲線上調整得到接近真實環境亮度之HDR影像。視覺色差的分析上,結果表示3D物件使用HDR方式顯示影像能夠較接近真實感受。單色模型的分析中,不論哪一種方式進行觀測評估視覺色差,CIE94與CIE2000色差公式優化結果的加權參數大約等於(KL,KC,KH)=(2:1:1.5),這可能意味著高反光和較深的陰影對視覺色差的判斷較不重要。且人眼較能感受到深色的視覺色差。多色模型的分析中,結果表明對於人型模型膚色的正確的重要性,且影像觀看會降低人眼對於膚色區域性變化的差異。最後本研究使用視覺色差得到的優化色差參數,系統化的找出影像上綜合性視覺色差評價後的單一指標。結果表示,影像色差色差第百分之九十五分位數與視覺色差相關度最高。


    3D printing is widespread in recent years. Color 3D printers are also available in the market now for rapid prototyping and small amount productions. However, evaluating the quality of 3D printing is an important but unresolved issue. The aim of this study is to evaluate color differences of 3D objects based on the HDR (High Dynamic Range) image. The experiment established a series of psychophysical experiments to evaluate the visual color differences. Observations includes entity viewing and image viewing. The image includes LDR (Low Dynamic Range) to HDR conversion. Multi-exposure LDR photos were integrated as HDR image using 3rd polynomial regression in logarithmic scales. In terms of color differences of 3D objects, simple and complex objects were tested psychophysically. The results were used to develop an imaging system for evaluating color differences of 3D objects.
    The psychophysical experiment results show that the best LDR to HDR conversion method is to apply a knee function to adjust the tone of an LDR image. In the analysis of visual color differences, the results show that the 3D objects displayed in HDR mode can be closer to the real feeling compared to LDR mode. In the analysis of the monochromatic model, no matter which way to observe and evaluate the visual color differences, the weighting parameters of CIE94 and CIE2000 color difference formulae optimization result is approximately equal to (KL, KC, KH) = (2:1:1.5), which suggests that highlight and deep shadows are less important in the perceptual color differences. And the human eye would sense dark color difference easily. In the analysis of the multicolor model, the results indicate that the correct importance of the skin color of the human model. In terms of image differences, the results show that the perceptual color differences are well-correlated to 95th percentile of the image color differences.

    中文摘要 I ABSTRACT IV 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XII 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文大綱 3 1.4 論文發表 4 第2章 文獻探討與原理 5 2.1 視覺評估 5 2.1.1 色差公式 5 2.1.2 色差視覺評估 7 2.1.3 立體模型之色差視覺評估 8 2.1.4 變異係數分析 10 2.1.5 影像差異 11 2.2 彩色3D列印 13 2.3 高動態範圍(HDR) 13 2.3.1 HDR影像捕捉與融合 13 2.3.2 動態範圍影像的階調調變 15 2.3.3 HDR顯示器 17 2.4 ICC色彩管理 19 第3章 研究流程與方法 20 3.1 研究架構 20 3.2 顯示器設備設置 20 3.3 前置實驗、LDR到HDR偏好的階調映射 21 3.3.1 測試影像 22 3.3.2 LDR到HDR影像轉換模型選擇 23 3.3.3 實驗環境 26 3.3.4 實驗數據與分析變數比較 27 3.3.5 實驗小結 30 3.4 立體複雜模型樣本建置 31 3.4.1 印表機色彩管理 31 3.4.2 模型建置 32 3.5 複雜模型樣本影像化內容建置 39 3.5.1 獲取影像內容 40 3.5.2 不同曝光影像融合 42 3.6 評估視覺色差方法 46 3.7 評估視覺色差實驗設置 47 3.7.1 實驗一、簡單模型之影像模擬觀測實驗 47 3.7.2 實驗二、複雜模型之實體觀測實驗 50 3.7.3 實驗三、複雜模型之影像化觀測實驗 52 第4章 視覺色差數據分析 53 4.1 單色簡單模型之影像模擬觀測實驗 53 4.1.1 實驗數據 53 4.1.2 實體觀測與模擬3D影像比較 55 4.2 單色複雜模型實驗 57 4.2.1 ANOVA(單向變異數分析) 57 4.2.1 實體觀測與HDR影像比較 60 4.3 多色複雜模型實驗 64 4.4 小結 67 第5章 系統化的影像效能驗證 68 5.1 研究架構 68 5.2 影像對齊方法 68 5.3 差異參數估計 73 5.4 小結 78 第6章 結論與未來建議 79 6.1 結論: 79 6.2 未來建議: 80 參考文獻 81

    [1] CIE Research Strategy (August 2016) - Topic 10 http://files.cie.co.at/877_CIE%20Research%20Strategy%20%28August%202016%29%20-%20Topic%2010.pdf
    [2] 胡國瑞、孫沛立、徐道義、陳鴻興、黃日鋒、詹文鑫、羅梅君,顯示色彩工程學(第二版),全華圖書, (2011) 287。
    [3] 陳鴻興、魏碩廷、徐明景、李文淵、謝翠如、吳瑞卿、孫沛立,色彩新論,五南圖書, (2018) 262。
    [4] Nathan Moroney, et al. "The CIECAM02 color appearance model." Color and Imaging Conference. " Vol. 2002. No. 1. Society for Imaging Science and Technology (2002).
    [5] Roy S. Berns, et al. "Visual determination of suprathreshold color‐difference tolerances using probit analysis." Color Research & Application, 16.5 (1991): 297-316.
    [6] M. R. Luo and B. Rigg. "BFD (l: c) colour‐difference formula Part 1ndashDevelopment of the formula." Journal of the Society of Dyers and Colourists, 103.2 (1987): 86-94.
    [7] S. S. Guan and M. R. Luo. "Investigation of parametric effects using small colour differences." Color Research & Application, 24.5 (1999): 331-343.
    [8] L.M. Cárdenas, R. Shamey, and D. Hinks. "Development of a Novel Linear Gray Scale for Visual Assessment of Small Color Differences." AATCC review 9.8 (2009).
    [9] W. C. Hung, P. L. Sun, Y. Z. Lai, Y. M. Chen, "A visual evaluation of color differences between 3D objects." CIE 2018 Smart Lighting Conference, CIE, (2018).
    [10] R. G. Kuehni "Variability in estimation of suprathreshold small color differences." Color Research & Application, 34.5 (2009): 367-374.
    [11] J. Morovic and P. L. Sun. "Visual differences in colour reproduction and their colorimetric correlates." IS&T Color and Imaging Conference (2002).
    [12] X. M. Zhang and B. A. Wandell. "A spatial extension of CIELAB for digital color image reproduction." SID international symposium digest of technical papers, 27 (1996).
    [13] S. J. Daly "Visible differences predictor: an algorithm for the assessment of image fidelity." Human Vision, Visual Processing, and Digital Display III. Vol. 1666. International Society for Optics and Photonics (1992).
    [14] J. Lubin, "A visual discrimination model for imaging system design and evaluation." Vision Models for Target Detection and Recognition: In Memory of Arthur Menendez. (1995) 245-283.
    [15] G. M. Johnson, and M. D. Fairchild. "Darwinism of color image difference models." IS&T Color and Imaging Conference (2001).
    [16] J. J. McCann, "A comparison of color metrics." IS&T Color and Imaging Conference (1996).
    [17] J. Uroz, J. Morovic, and M. R. Luo. "Perceptibility Thresholds of Color Differences in Large Printed Images." Color Image Science: Exploiting Digital Media, MacDonald L. W. and Luo MR (eds.), John Wiley & Sons (2002): 49-73.
    [18] T. Song and M. R. Luo. "Colorimetric Thresholds for Printed Images." IS&T Color and Imaging Conference (2001).
    [19] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, "High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting." Morgan Kaufmann, (2005) 206.
    [20] E. Reinhard, G. Ward, S. Pattanaik, P. Debevec, W. Heidrich, K. Myszkowski, High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (2nd Ed.). Morgan Kaufmann, (2010) 145.
    [21] P. E. Debevec and J. Malik. "Recovering high dynamic range radiance maps from photographs." Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co., (1997).
    [22] Y. Z. Li, L. Sharan, and E. H. Adelson. "Compressing and companding high dynamic range images with subband architectures." ACM Transactions on Graphics, 24. 3.(2005) 836-844.
    [23] W. Burger, "Digital Image Processing: An Algorithmic Introduction using Java." Springer, (2008) 61.
    [24] A. M. Reza, "Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement." Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 38.1 (2004): 35-44.
    [25] A. G. Rempel, et al. "Ldr2hdr: on-the-fly reverse tone mapping of legacy video and photographs." ACM Transactions on Graphics (TOG). Vol. 26. No. 3. ACM, (2007_.
    [26] L. Meylan, S. Daly and S. Süsstrunk. "The reproduction of specular highlights on high dynamic range displays." Color and Imaging Conference. Vol. 2006. No. 1. Society for Imaging Science and Technology, (2006).
    [27] L. Meylan, S. Daly, and S. Süsstrunk. "Tone mapping for high dynamic range displays." Proc. of SPIE, 6492, (2007).
    [28] M. Bertalmio, et al. "Simultaneous structure and texture image inpainting." IEEE Transactions on Image Processing, 12.8 (2003): 882-889.
    [29] L. Wang, et al. "High dynamic range image hallucination." Proceedings of the 18th Eurographics Conference on Rendering Techniques. Eurographics Association, (2007).
    [30] SMPTE Standards Webcast Series, “SMPTE ST 2094 and Dynamic Metadata,”, (2017)
    [31] C. Chinnock, "Dolby Vision and HDR10." White Paper of Insight Media (2016).
    [32] Wikipedia, “Hybrid Log-Gamma”, https://en.wikipedia.org/wiki/Hybrid_Log-Gamma (查詢日期:May. 31, 2018)
    [33] “BT.2100: Image parameter values for high dynamic range television for use in production and international programme exchange,” International Telecommunication Union, (2016).
    [34] “Samsung and Amazon Video Deliver Next Generation HDR Video Experience with Updated Open Standard HDR10+,” Samsung, (2017).
    [35] 胡國瑞、孫沛立、徐道義、陳鴻興、黃日鋒、詹文鑫、羅梅君,顯示色彩工程學(第二版),全華圖書, (2011) 178。
    [36] The benchmark image link: http://www.cs.ubc.ca/labs/imager/tr/2007/Rempel_Ldr2Hdr/
    [37] G. W. Larson, H. Rushmeier, and C. Piatko. "A visibility matching tone reproduction operator for high dynamic range scenes." IEEE Transactions on Visualization & Computer Graphics, 4 (1997): 291-306.
    [38] G. Hong, M. R. Luo, and P. A. Rhodes. "A study of digital camera colorimetric characterization based on polynomial modeling." Color Research & Application. 26.1 (2001): 76-84.
    [39] K. Xiao, et al. "A colour image reproduction framework for 3D colour printing." Proc. of SPIE, 10153, (2016).
    [40] H. Bay, T. Tuytelaars, and L. V. Gool. "Surf: Speeded up robust features." European Conference on Computer Vision. Springer, Berlin, Heidelberg, (2006).
    [41] C. Boguslaw and P. Siebert. An Introduction to 3D Computer Vision Techniques and Algorithms, Wiley (2009).
    [42] R. C. Gonzalez and R. Woods, "Digital Image Processing" (3rd Edition), Prentice Hall, Woods (2007).

    QR CODE