簡易檢索 / 詳目顯示

研究生: 林姿蓉
Zih-rong Lin
論文名稱: 多波長可調式環型光纖雷射與注入鎖模法布里-比洛雷射二極體於光纖網路之應用
The Application of Multi-Wavelength Tunable Fiber Ring Laser and Injection-Locked Fabry-Pérot Laser Diode to Optical Fiber Networks
指導教授: 劉政光
Cheng-kuang Liu
口試委員: 鄭木海
Wood-hi Cheng
曹恆偉
Hen-wei Tsao
黃振發
Jen-fa Huang
王立康
none
張嘉男
none
徐世祥
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 117
中文關鍵詞: 可調式光纖雷射注入鎖模多波長光纖雷射法布里-比洛雷射二極體光纖網路
外文關鍵詞: tunable fiber laser, injection-locked, multi-wavelength fiber laser, Fabry-Pérot laser diode, Optical Fiber Networks
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點包括單/雙/多波長可調式環型光纖雷射之研製,及其與注入鎖模法布里-比洛雷射二極體之應用,著重於傳輸訊號品質測試及低成本被動光網路於電視廣播之應用。首先,本文說明可調式單波長環型光纖雷射及可調式直調環型光纖雷射之研製;在可調式單波長環型光纖雷射方面: 採用半導體光放大器與環型摻鉺光纖雷射架構,探討半導體光放大器抑制低頻擾動腔模分佈雜訊之功能。此可調式環型光纖雷射之波長可調範圍涵蓋C與L波帶(1540~1604 nm),平均輸出光功率為2.2 dBm,訊雜比大於46 dB。此外,也利用此環型光纖雷射高速調變10-Gb/s訊號,實驗測試單向下行傳輸單模光纖50公里,功率償付為0.96 dB。在可調式直調環型光纖雷射方面:研製2-kHz線寬,可調波長範圍為45 nm (1535~ 1580 nm), 涵蓋C與L波帶,訊雜比大於38 dB,且此可調式環型光纖雷射可直調1.25-Gb/s下行訊號,並且注入鎖模法布里-比洛雷射二極體後,再直調1.25-Gb/s上行訊號於雙向存取網路之應用。傳輸25公里單模光纖後,上下行功率償付分別為0.11 dB與0.86 dB。
    接著,本文利用可調式環型光纖雷射注入鎖模法布里-比洛技術,分析其傳輸訊號測試上之應用,以及整合無線訊號電視廣播與高速雙向資料傳輸之低成本被動光網路應用。
    最後,本文探討雙波長可調式環型光纖雷射及多波長環型光纖雷射之研製;在雙波長可調式環型光纖雷射方面: 其架構採用半導體光放大器與環型摻鉺光纖雷射及兩個可調式光濾波器。波長可調範圍為58 nm (1547~ 1605 nm), 涵蓋C與L波帶,功率差小於1.5 dB。此外,也利用此環型光纖雷射高速調變10-Gb/s訊號,實驗測試單向下行傳輸單模光纖25公里,功率償付為0.5 dB。在多波長環型光纖雷射方面: 其架構採用半導體光放大器與環型摻鉺光纖雷射及兩個匹配100 GHz分波多工器。可同時輸出4個波長,其旁模抑制比大於35 dB,功率差小於0.4 dB,4個波長平均可得輸出功率為-3.3 dBm。並且,利用此光纖雷射,進行高速2.5-Gb/s訊號調變且單向傳輸單模光纖25公里,實驗結果顯示其靈敏度為-27.94 dBm,功率償付為0.88 dB。


    In this dissertation, the realization is presented of single-/dual-/multi-wavelength tunable fiber ring laser, which can be applied to performance testing of systems with injection-locked Fabry-Pérot laser diode (FP-LD) and television broadcasting using a low-cost passive optical network (PON). Firstly, we present the realization of tunable single-wavelength fiber ring laser and tunable directly modulated fiber ring laser. For tunable single-wavelength fiber ring laser, a tunable semiconductor optical amplifier-erbium-doped fiber (SOA-EDF) ring laser is presented, using an SOA to suppress cavity mode partition noise at low frequencies. The tunable SOA-EDF fiber ring laser has a tunable wavelength range covering both C- and L-band (1540~1604 nm). The average output power is 2.2 dBm, and optical signal-to-noise ratio (SNR) is above 46 dB. An application is shown for a 10-Gb/s single directional transmission over 50-km single mode fiber (SMF) with a power penalty of 0.94 dB. For tunable directly modulated fiber ring laser having a 2-kHz linewidth, wavelength tuning range is 45-nm (1535~1580 nm) covering both C- and L- band, optical SNR is above 38 dB, and an demonstration is shown for directly modulated 1.25-Gb/s downstream and upstream transmissions, using injection-locked FP-LD. Power penalties less than 0.11 dB and 0.86 dB are demonstrated for the simultaneously transmission over 25-km SMF. Then, we present the application of FP-LD injection-locked by tunable fiber ring laser technique to system performance testing. Moreover, a relatively-low-cost PON system is proposed for television broadcasting and high-speed bidirectional communications.
    Finally, the realization of dual-/multi-wavelength fiber ring lasers is presented. A tunable dual-wavelength fiber ring laser is shown using an SOA-EDF ring laser framework and two optical tunable filters. The wavelength tuning range is 58-nm (1547~1605 nm) covering both C- and L-band, and the power equalization of the dual-wavelength outputs are less than 1.5 dB. An application is shown for a 10-Gb/s single directional transmission over 25-km SMF with a power penalty of 0.5 dB. Furthermore, a multi-wavelength fiber ring laser is demonstrated using an SOA-EDF ring laser framework and a pair of multiplexer/demultiplexer (MUX/DMUX) with a channel spacing of 0.8 nm (100 GHz) conforming to the International Telecommunication Union (ITU) grid. The lasers can generate four wavelengths simultaneously and side-mode suppression ratio (SMSR) is above 35 dB. The maximum power equalization is less than 0.4 dB and minimum average output power is above -3.3 dBm. Our experimental results show that the sensitivity is -27.94 dBm and the power penalty is 0.88 dB for the transmission of 2.5-Gb/s data over 25-km SMF.

    摘要 I Abstract III 誌謝 V Nomenclature VII List of Figures and Tables IX Figure captions IX Table captions XII Chapter 1 Introduction 1 1.1 Overview of Optical Communications 1 1.1.1 Fiber-to-the-x (FTTx) 1 1.1.2 Radio-over-Fiber (RoF) 3 1.2 Tunable Laser 6 1.3 Research Motivation and Objectives 7 1.4 Organization of the Dissertation 8 Chapter 2 Tunable Fiber Ring Lasers 10 2.1 Introduction 10 2.2 Theoretical of Ring Cavity Laser 11 2.2.1 Characteristics of Ring Cavity EDFL 11 2.2.2 Characteristics of SOA 16 2.3 Tunable SOA-EDF Ring Laser 20 2.3.1 Configuration of Tunable SOA-EDF Ring Laser 21 2.3.2 Characteristics of Tunable SOA-EDF Ring Laser 22 2.4 Tunable Directly Modulated Fiber Ring Laser 26 2.4.1 Characteristics of RSOA 26 2.4.2 Configuration of Tunable Directly Modulated Fiber Ring Laser… 29 2.4.3 Characteristics of Tunable Directly Modulated Fiber Ring Laser… 30 2.5 Applications of Tunable Ring Laser to Bidirectional Transmission 33 2.5.1 Experimental Setup 34 2.5.2 Experimental Results and Discussion 36 2.6 Summary of Chapter 2 39 Chapter 3 Applications of the Tunable Fiber Ring Laser for Performance Testing 42 3.1 Introduction 42 3.2 Characteristics of Injection-Locked Fabry-Pérot Laser Diode 43 3.3 Performance Test of Bidirectional Transmissions 46 3.3.1 Proposed Scheme 48 3.3.2 Experimental Results and Discussion 50 3.4 Summary of Chapter 3 57 Chapter 4 Applications of A Low-Cost Passive Optical Network to Television Broadcasting and High-Speed Bidirectional Communications 58 4.1 Introduction 58 4.2 Proposed Scheme 60 4.3 DVB-T Signal Broadcasting Using Optical Fiber Transmissions… 62 4.3.1 Effects of VCSEL Bias and Received DVB-T Signal Power on Transmission Performance 62 4.3.2 DVB-T Transmission Experiment 64 4.4 Simultaneous Transmissions of High-Speed Bidirectional Data and DVB-T Signals 67 4.4.1 Simultaneous Transmission Experiment 67 4.4.2 Roles of VCSEL and FP-LD 71 4.5 Summary of Chapter 4 73 Chapter 5 Dual-/Multi-Wavelength Fiber Ring Lasers and Their Transmission Performance 75 5.1 Introduction 75 5.2 Tunable Dual-Wavelength Fiber Ring Laser 76 5.2.1 Configuration of Tunable Dual-Wavelength Fiber Ring Laser 77 5.2.2 Characteristics of Tunable Dual-Wavelength Fiber Ring Laser 78 5.3 Multi-Wavelength Fiber Ring Laser 81 5.3.1 Configuration of Multi-Wavelength Fiber Ring Laser 82 5.3.2 Characteristics of Multi-Wavelength Fiber Ring Laser 83 5.4 Summary of Chapter 5 87 Chapter 6 Conclusions and Discussion of Future Work 90 6.1 Conclusions 90 6.2 Discussion of Future Work 92 Reference 94 Publication List 103

    [1] L. Hutcheson, “FTTx: current status and the future,” IEEE Communications Magazine, vol. 46, no. 7, pp. 90-95, 2008.
    [2] T. Koonen, “Fiber to the home/fiber to the premises: what, where, and when?,” Proceedings of the IEEE, vol. 94, no. 5, pp. 911-934, 2006.
    [3] P. W. Shumate, and R. K. Snelling, “Evolution of fiber in the residential loop plant,” IEEE Communications Magazine, vol. 29, no. 3, pp. 68-74, 1991.
    [4] F. Effenberger, and T. S. El-Bawab, “Passive optical networks (PONs): past, present, and future,” Optical Switching and Networking, vol. 6, no. 3, pp. 143-150, 2009.
    [5] R. E. Wagner, J. R. Igel, R. Whitman, M. D. Vaughn, A. B. Ruffin, and S. Bickham, “Fiber-based broadband-access deployment in the United States,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4526-4540, 2006.
    [6] H. Anpeng, S. Liang, L. Wei, X. Anshi, X. Linzhen, “Solutions to challenges of FTTH deployment in China,” Globecom Workshops, 2007 IEEE, 26-30 Nov. 2007, pp. 1-3.
    [7] K. M. Maamoun, and H. T. Mouftah, “A survey and a novel scheme for RoF-PON as FTTx wireless services,” pp. 246-253.
    [8] A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, M. J. Wale, “Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 1, pp. 149-156, 2005.
    [9] H. Ishii, K. Kasaya, H. Oohashi, Y. Shibata, H. Yasaka, K. Okamoto, “Widely wavelength-tunable DFB laser array integrated with funnel combiner,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 5, pp. 1089-1094, 2007.
    [10] K. Hsu, C. M. Miller, D. Babic, D. Houng, A. Taylor, “Continuously tunable photopumped 1.3μm fiber Fabry-Perot surface-emitting lasers,” Photonics Technology Letters, IEEE, vol. 10, no. 9, pp. 1199-1201, 1998.
    [11] D. Vakhshoori, P. Tayebati, C.-C. Lu, M. Azimi, P. Wang, J.-H. Zhou, E. Canoglu, “2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range,” Electronics Letters, vol. 35, no. 11, pp. 900-901, 1999.
    [12] C.-H. J. Connie, “Tunable VCSEL,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 978-987, 2000.
    [13] J. Buus, and E. J. Murphy, “Tunable lasers in optical networks,” Journal of Lightwave Technology, vol. 24, no. 1, pp. 5-11, 2006.
    [14] Y. Suematsu, and K. Iga, “Semiconductor lasers in photonics,” Journal of Lightwave Technology, vol. 26, no. 9, pp. 1132-1144, 2008.
    [15] E. Belanger, M. Bernier, D. Faucher, D. Cote, R. Vallee, “High-power and widely tunable all-fiber raman laser,” Journal of Lightwave Technology, vol. 26, no. 12, pp. 1696-1701, 2008.
    [16] S. Yamashita, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 1, pp. 41-43, 2001.
    [17] H. Chen, H. E. Gang, F. Babin, G. W. Schinn, “Single-frequency operation of a widely tunable SOA-based fiber ring laser,” Optical Fiber Communication & Optoelectronic Exposition & Conference, Oct. 2006. AOE 2006. Asian, pp. 1-3.
    [18] L. Xu, I. Glesk, D. Rand, V. Baby, P. R. Prucnal, “Suppression of beating noise of narrow-linewidth erbium-doped fiber ring lasers by use of a semiconductor optical amplifier,” Optics Letters, vol. 28, no. 10, pp. 780-782, 2003.
    [19] H. L. Liu, H. Y. Tam, W. H. Chung, P. K. A. Wai, N. Sugimoto “Low beat-noise polarized tunable fiber ring laser,” IEEE Photonics Technology Letters, vol. 18, no. 5, pp. 706-708, 2006.
    [20] X. Qianfan, and Y. Minyu, “Theoretical analyses on short-term stability of semiconductor fiber ring lasers,” IEEE Journal of Quantum Electronics, vol. 39, no. 10, pp. 1260-1265, 2003.
    [21] H. Chen, “Dynamics of widely tunable single-frequency semiconductor fiber ring laser,” Physics Letters A, vol. 320, no. 5-6, pp. 333-337, 2004.
    [22] N. Park, and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photonics Technology Letters, vol. 8, no. 11, pp. 1459-1461, 1996.
    [23] J.-L. Yang, S.-C. Tjin, and N.-Q. Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1026-1028, 2004.
    [24] F. W. Tong, W. Jin, D. N. Wang, P. K. A. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electronics Letters, vol. 40, no. 10, pp. 594-595, 2004.
    [25] Y.-G. Han, K. Gilhwan, J.-H. Lee, S.-H. Kim, S.-B. Lee “Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620 nm,” IEEE Photonics Technology Letters, vol. 17, no. 5, pp. 989-991, 2005.
    [26] K. C. Harvey, and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Optics Letters, vol. 16, no. 12, pp. 910-912, 1991.
    [27] Z. Jianluo, Y. Chao-Yu, G. W. Schinn, W. R. L. Clements, J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” Journal of Lightwave Technology, , vol. 14, no. 1, pp. 104-109, 1996.
    [28] P. L. Scrivener, E. J. Tarbox, and P. D. Maton, “Narrow linewidth tunable operation of erbium-doped single-mode fibre laser,” Electronics Letters, vol. 25, no. 8, pp. 549-550, 1989.
    [29] C. R. Cochlain, and R. J. Mears, “Broadband tunable single frequency diode-pumped erbium doped fibre laser,” Electronics Letters, vol. 28, no. 2, pp. 124-126, 1992.
    [30] T. Haber, K. Hsu, C. Miller, B. Yufei, “Tunable erbium-doped fiber ring laser precisely locked to the 50-GHz ITU frequency grid,” IEEE Photonics Technology Letters, vol. 12, no. 11, pp. 1456-1458, 2000.
    [31] Z. Xin, N.-H. Zhu, X. Liang, B. Yufei, “A stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking,” Journal of Lightwave Technology, vol. 25, no. 4, pp. 1027-1033, 2007.
    [32] M. Matsuura, and N. Kishi, “Frequency control characteristics of a single-frequency fiber laser with an external light injection,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, no. 1, pp. 55-58, 2001.
    [33] M.-S. Kang, M.-S. Lee, J.-C. Yong, B.-Y. Kim, “Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter,” Journal of Lightwave Technology, vol. 24, no. 4, pp. 1812-1823, 2006.
    [34] C. Hongxin, F. Babin, M. Leblanc, G. W. Schinn., “Widely tunable single-frequency erbium-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 15, no. 2, pp. 185-187, 2003.
    [35] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photonics Technology Letters, vol. 13, no. 11, pp. 1167-1169, 2001.
    [36] H.-Y. Ryu, W.-K. Lee, H.-S Moon, S.-K. Kim, H.-S. Suh, D. Lee “Stable single-frequency fiber ring laser for 25-GHz ITU-T grids utilizing saturable absorber filter,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1824-1826, 2005.
    [37] C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1817-1830, 1994.
    [38] K. Ogawa, “Analysis of mode partition noise in laser transmission systems,” IEEE Journal of Quantum Electronics,vol. 18, no. 5, pp. 849-855, 1982.
    [39] Y. Okano, K. Nakagawa, and T. Ito, “Laser mode partition noise evaluation for optical fiber transmission,” IEEE Transactions on Communications, vol. 28, no. 2, pp. 238-243, 1980.
    [40] K. Sato, and H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics,vol. 7, no. 2, pp. 328-333, 2001.
    [41] K. Kobayashi, and I. Mito, “Single frequency and tunable laser diodes,” Journal of Lightwave Technology, vol. 6, no. 11, pp. 1623-1633, 1988.
    [42] S. J. Konieczny, P. Zajac, A. Skorczakowski, “Analysis of activation of active double-clad optical fibers,” Optica Applicata, vol. 4, pp. 955-968, 2005.
    [43] H. Schmuck, T. Pfeiffer, and G. Veith, “Widely tunable narrow linewidth erbium doped fibre ring laser,” Electronics Letters, vol. 27, no. 23, pp. 2117-2119, 1991.
    [44] Z. Deyu, P. R. Prucnal, and I. Glesk, “A widely tunable narrow linewidth semiconductor fiber ring laser,” IEEE Photonics Technology Letters, vol. 10, no. 6, pp. 781-783, 1998.
    [45] P. C. Reeves-Hall, and J. R. Taylor, “Wavelength tunable CW Raman fiber ring laser operating at 1486-1551 nm,” Lasers and Electro-Optics, 2001. 2001. CLEO '01. Technical Digest. Summaries of papers presented at the Conference on, pp. 145-146.
    [46] N. Cheng, and L. G. Kazovsky, “Implications of injection current and optical input power on the performance of reflective semiconductor optical amplifiers,” Physics and Simulation of Optoelectronic Devices XV , San Jose, CA, USA, pp. 64680V-12.
    [47] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” Journal of Lightwave Technology, vol. 22, no. 11, pp. 2582-2591, 2004.
    [48] K. Iwatsuki, J.-I. Kani, H. Suzuki, M. Fujiwara, “Access and metro networks based on WDM technologies,” Journal of Lightwave Technology, , vol. 22, no. 11, pp. 2623-2630, 2004.
    [49] H.-D. Kim, S.-G. Kang, and C.-H. Le, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photonics Technology Letters, vol. 12, no. 8, pp. 1067-1069, 2000.
    [50] X. Cheng, Y. J. Wen, Z. Xu, Y. Wang, “Characterization of Fabry-Perot laser diodes injection locked by spectrum sliced ASE noise in WDM-PON,” Optical Fiber Technology, vol. 15, no. 2, pp. 161-164, 2009.
    [51] Z. Xu, Y. J. Wen, W.-D. Zhong, C.-J. Chae, X.-F. Cheng, Y. Wang, C. Lu, J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Perot laser diodes,” Opt. Express, vol. 15, no. 6, pp. 2953-2962, 2007.
    [52] H.-C. Kwon, and S.-K. Han, “Performance analysis of a wavelength-locked Fabry-Perot laser diode by light injection of an external spectrally sliced Fabry-Perot laser diode,” Applied Optics, vol. 45, no. 24, pp. 6175-6179, 2006.
    [53] Y.-S. Liao, H.-C. Kuo, Y.-J. Chen, G.-R. Lin, “Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet,” Optics Express, vol. 17, no. 6, pp. 4859-4867, 2009.
    [54] C.-L. Tseng, C.-K. Liu, J.-J. Jou, W.-Y. Lin, C.-W. Shih, S.-C. Lin, S.-L. Lee, G. Keiser, “Bidirectional transmission using tunable fiber lasers and injection-locked Fabry-Perot laser diodes for WDM access networks,” IEEE Photonics Technology Letters, vol. 20, no. 10, pp. 794-796, 2008.
    [55] C.-H. Yeh, F.-Y. Shih, C.-N. Lee, C.-T. Chen, and S. Chi, “Wavelength-tunable erbium fiber ring laser in single-frequency operation utilizing Fabry-Perot laser with Sagnac cavity,” Optics Communications, vol. 281, no. 9, pp. 2454-2458, 2008.
    [56] D. Derickson, Fiber optic test and measurement, Chap. 8, pp. 284-336: Prentice Hall, 1997.
    [57] M. O. S. R. Hui, Fiber optic measurement techniques, Chap. 5, pp. 483-521: Academic Press, 2008.
    [58] D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, A. E. Willner, “Optical performance monitoring,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 294-304, 2004.
    [59] Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Optical Fiber Technology, vol. 16, no. 1, pp. 20-45, 2010.
    [60] G. D. A. M. Dastmalchi, “Medium-power erbium-ytterbium-codoped multiwavelength fiber laser,” Optical Engineering, vol. 6, no. 47, pp. 065003-065004, 2008.
    [61] S. Abad, M. López-Amo, and S. Jarabo, “Optical filter design for multiwavelength erbium-doped fiber ring lasers,” Optics Communications, vol. 208, no. 1-3, pp. 167-172, 2002.
    [62] X. Dong, H.-Y. Tam, B.-O. Guan, C. Zhao, X. Dong, “High power erbium-doped fiber ring laser with widely tunable range over 100 nm,” Optics Communications, vol. 224, no. 4-6, pp. 295-299, 2003.
    [63] K. Jun-ichi, and K. Iwatsuki, “A wavelength-tunable optical transmitter using semiconductor optical amplifiers and an optical tunable filter for metro/access DWDM applications,” Journal of Lightwave Technology, vol. 23, no. 3, pp. 1164-1169, 2005.
    [64] M. Zirngibl, C. R. Doerr, and L. W. Stulz, “Study of spectral slicing for local access applications,” IEEE Photonics Technology Letters, vol. 8, no. 5, pp. 721-723, 1996.
    [65] L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks,” Electronics Letters, vol. 38, no. 1, pp. 43-45, 2002.
    [66] Y. J. Wen, and C.-J. Chae, “WDM-PON upstream transmission using Fabry-Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Optics Communications, vol. 260, no. 2, pp. 691-695, 2006.
    [67] T. R. Zaman, and R. J. Ram, “Modulation of injection locked lasers for WDM-PON applications,” pp. 1-3.
    [68] B. M. Flax, “Intelligent buildings,” IEEE Communications Magazine, vol. 29, no. 4, pp. 24-27, 1991.
    [69] N. Chand, P. D. Magill, S. V. Swaminathan, T. H. Daugherty, “Delivery of digital video and other multimedia services (> 1 Gb/s bandwidth) in passband above the 155 Mb/s baseband services on a FTTx full service access network,” Journal of Lightwave Technology, vol. 17, no. 12, pp. 2449-2460, 1999.
    [70] D. K. Jung, H. Kim, K. H. Han, Y. C. Chung, “Spectrum-sliced bidirectional passive optical network for simultaneous transmission of WDM and digital broadcast video signals,” Electronics Letters, vol. 37, no. 5, pp. 308-309, 2001.
    [71] E. S. Son, K. H. Han, J. K. Kim,Y. C. Chung, “Bidirectional WDM passive optical network for simultaneous transmission of data and digital broadcast video service,” Journal of Lightwave Technology, , vol. 21, no. 8, pp. 1723-1727, 2003.
    [72] Z.-R. Lin, K.-C. Lai, C.-K.Liu, S.-L. Lee, G. Keiser, H.-C. Chang, C. L. Tseng, and J.- J. Jou, “A low-cost passive optical network for television broadcasting and high-speed bidirection communication in intelligent buildings,” in Proceedings of Intelligent Buildings and Smart Homes Conference, Taipei, Taiwan., 2009, pp. 217-220.
    [73] H.-H. Lu, W.-S. Tsai, Y.-L. Lui, Y.-L. Chen, “A radio-on-hybrid WDM transport system,” IEEE Photonics Technology Letters, , vol. 17, no. 7, pp. 1576-1578, 2005.
    [74] S.-J. Tzeng, H.-H. Lu, W.-I. Lin, H.-C. Peng, S.-S. Hsu, H.-W. Wang, “A hybrid radio-on-DWDM transport system for PHS/LAN/ITS/WiMAX applications,” Optical Fiber Technology, vol. 15, no. 2, pp. 119-124, 2009.
    [75] H. Wai, C.-K. Chan, L.-K. Chen, F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser,” IEEE Photonics Technology Letters, vol. 15, no. 10, pp. 1476-1478, 2003.
    [76] M.-L. Yee, L.-C. Ong, and C.-K. Sim, “Low-cost radio-over-fiber in-building distribution network for WLAN,UWB and digital TV broadcasting,” in Asia-Pacific Microwave Conference, Yokahama, Japan, Dec. 2006, pp. 95-98.
    [77] S. B. Constant, Y. Le Guennec, G. Maury, N. Corrao, B. Cabon, “Low-cost all-optical up-conversion of digital radio signals using a directly modulated 1550-nm emitting VCSEL,” IEEE Photonics Technology Letters, vol. 20, no. 2, pp. 120-122, 2008.
    [78] J.-H. Lee, K. Lee, Y.-G. Han, S.-B. Lee, C.-H. Kim “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-Band OLT, L-Band ONU, and U-Band monitoring,” Journal of Lightwave Technology, vol. 25, no. 10, pp. 2891-2897, 2007.
    [79] H.-H. Lin, C.-Y. Lee, S.-C. Lin, S.-L. Lee, and G. Keiser, “WDM-PON Systems using cross-remodulation to double network capacity with reduced Rayleigh scattering effects,” in Optical Fiber communication/National Fiber Optic Engineers Conference, San Diego, CA., Feb. 2008, pp. 1-3.
    [80] E. S. T. S. European Telecommunications Standards Institute, “Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial television,” 2009.
    [81] C. H. Lin, Lin, M. C., Ting, P. A., “DVB-T baseband signal processing techniques,” SoC Technical Journal, vol. 9, no. 9, pp. 41-53, 2008.
    [82] T. R. European Telecommunications Standards Institute, “Digital video broadcasting (DVB); measurement guidelines for DVB systems,” 1997.
    [83] N. Genay, Chanclou, P., Duong, T., Brochier, N., and Pincemin, E., “Bidirectional WDM/TDM-PON access networks integrating downstream 10 Gbit/s DPSK and upstream 2.5 Gbit/s OOK on the same wavelength,” in Optical Communications, ECOC 2006. European Conference, Cannes, France, 2006, pp. 1-2.
    [84] C. Lin, and F. Mengel, “Reduction of frequency chirping and dynamic linewidth in high-speed directly modulated semiconductor lasers by injection locking,” Electronics Letters, vol. 20, no. 25, pp. 1073-1075, 1984.
    [85] J. Wang, M. K. Haldar, L. Li, F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technology Letters, vol. 8, no. 1, pp. 34-36, 1996.
    [86] S.-L. Lee, I.-F. Jang, C.-Y. Wang, C.-T. Pien, T.-T. Shih, “Monolithically integrated multiwavelength sampled grating DBR lasers for dense WDM applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, pp. 197-206, 2000.
    [87] G. J. Cowie, D. Yu, and C. Yew Tai, “Brillouin/erbium fiber lasers,” Journal of Lightwave Technology, vol. 15, no. 7, pp. 1198-1204, 1997.
    [88] J. Chow, G. Town, B. Eggleton,M. Ibsen, K. Sugden, I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photonics Technology Letters, vol. 8, no. 1, pp. 60-62, 1996.
    [89] H. Shi, J. Finlay, G. A. Alphonse, J. C. Connolly, P. J. Delfyett, “Multiwavelength 10-GHz picosecond pulse generation from a single-stripe semiconductor diode laser,” IEEE Photonics Technology Letters, vol. 9, no. 11, pp. 1439-1441, 1997.
    [90] C.-L. Zhao, S. Yang, H. Meng, Z. Li, S. Yuan, K. Guiyun, X. Dong, “Efficient multi-wavelength fiber laser operating in L-band,” Optics Communications, vol. 204, no. 1-6, pp. 323-326, 2002.
    [91] Y.-g. Liu, X. Dong, P. Shum, S. Yuan, G. Kai, X. Dong, “Stable room-temperature multi-wavelength lasing realization in ordinary erbium-doped fiber loop lasers,” Optics Express, vol. 14, no. 20, pp. 9293-9298, 2006.
    [92] L. Shenping, D. Hao, and K. T. Chan, “Erbium-doped fibre lasers for dual wavelength operation,” Electronics Letters, vol. 33, no. 1, pp. 52-53, 1997.
    [93] C.-H. Yeh, C.-W. Chow, F.-Y. Shih, C.-H. Wang, Y.-F. Wu, C. Sien, “Tunable dual-wavelength fiber laser using optical-injection Fabry-Perot laser,” IEEE Photonics Technology Letters, vol. 20, no. 24, pp. 2093-2095, 2008.
    [94] J.-R. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Optics Communications, vol. 281, no. 17, pp. 4432-4434, 2008.
    [95] M. A. Quintela, R. A. Perez-Herrera, I. Canales, M. Fernandez-Vallejo, M. Lopez-Amo, J. M. Lopez-Higuera, “Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation,” IEEE Photonics Technology Letters, vol. 22, no. 6, pp. 368-370.
    [96] P. J. Moore, Z. J. Chaboyer, and G. Das, “Tunable dual-wavelength fiber laser,” Optical Fiber Technology, vol. 15, no. 4, pp. 377-379, 2009.
    [97] P.-C. Peng, H.-Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technology Letters, vol. 15, no. 5, pp. 661-663, 2003.
    [98] C. H. Yeh, F. Y. Shih, C. N. Lee, C. T. Chen, S. Chi, “Wavelength-tunable erbium fiber ring laser in single-frequency operation utilizing Fabry-Perot laser with Sagnac cavity,” Optics Communications, vol. 281, no. 9, pp. 2454-2458, 2008.
    [99] H. Ahmad, M. Z. Zulkifli, A. A. Latif, S. W. Harun, “Tunable dual wavelength fiber laser incorporating AWG and optical channel selector by controlling the cavity loss,” Optics Communications, vol. 282, no. 24, pp. 4771-4775, 2009.
    [100] S. K. Kim, M. J. Chu, and J. H. Lee, “Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback,” Optics Communications, vol. 190, no. 1-6, pp. 291-302, 2001.
    [101] R. Slavík, S. LaRochelle, and M. Karásek, “High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band,” Optics Communications, vol. 206, no. 4-6, pp. 365-371, 2002.
    [102] N. Pleros, C. Bintjas, M. Kalyvas, “Multiwavelength and power equalized SOA laser sources,” IEEE Photonics Technology Letters, vol. 14, no. 5, pp. 693-695, 2002.
    [103] V. Baby, L. R. Chen, S. Doucet, S. LaRochelle, “Continuous-wave operation of semiconductor optical amplifier-based multiwavelength tunable fiber lasers with 25-GHz spacing,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 3, pp. 764-769, 2007.
    [104] C. J. S. De Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, J. R. Taylor, “Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55μm,” Electronics Letters, vol. 37, no. 13, pp. 825-826, 2001.
    [105] Y.-G. Liu, D. Wang, and X. Dong, “Stable room-temperature multi-wavelength lasing oscillations in a Brillouin-Raman fiber ring laser,” Optics Communications, vol. 281, no. 21, pp. 5400-5404, 2008.
    [106] K. Lee, S.-D. Lim, C.-H. Kim, J.-H. Lee, Y.-G. Han, S.-B. Lee “Noise reduction in multiwavelength SOA-based ring laser by coupled dual cavities for WDM applications,” Journal of Lightwave Technology, vol. 28, no. 5, pp. 739-745, 2010.
    [107] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, no. 4-6, pp. 295-301, 2003.
    [108] C.-L. Zhao, X. Yang, C. Lu, H.-N. Jun, X. Guo, C.-P. Roy, X. Dong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Optics Communications, vol. 230, no. 4-6, pp. 313-317, 2004.
    [109] H. L. An, X. Z. Lin, E. Y. B. Pun, H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter,” Optics Communications, vol. 169, no. 1-6, pp. 159-165, 1999.
    [110] C. H. Yeh, C. W. Chow, Y. F. Wu, F. Y. Shih, C. H. Wang, S. Chi, “Multiwavelength erbium-doped fiber ring laser employing Fabry-Perot etalon inside cavity operating in room temperature,” Optical Fiber Technology, vol. 15, no. 4, pp. 344-347, 2009.
    [111] C. A. Khansa, S. Bhattacharya, and A. Prabhakar, “Multiwavelength erbium doped fiber ring lasers,” Optics Communications, vol. 282, no. 12, pp. 2380-2387, 2009.

    無法下載圖示 全文公開日期 2015/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE