簡易檢索 / 詳目顯示

研究生: 陳君豐
Jun-Feng Chen
論文名稱: 應用於光獵能系統之單電感升降壓轉換器
Single-Inductor Buck-Boost Converter for Light-Harvesting
指導教授: 陳伯奇
Po-Ki Chen
口試委員: 陳伯奇
Po-Ki Chen
鍾勇輝
Yung-Hui Chung
陳景然
Ching-Jan Chen
盧志文
Chih-Wen Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 111
中文關鍵詞: CMOS正面照光太陽能電池最大功率追蹤切換式升降壓型轉換器獵能技術
外文關鍵詞: CMOS Front-Illuminated Solar cell, Maximum Power Point Tracking, DC-DC Buck-Boost Converter, Energy Harvesting
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一應用於太陽能獵能技術之單電感升降壓型轉換器為感測器提供電源,利用CMOS太陽能電池收集能量後,經電源管理單元供給穩定電源至感測器。為了解決獵能環境下因太陽能光源變動而造成輸出不穩定,甚至是無法使用的情況,因此在本論文提出了模式切換的架構,不僅可以根據不同環境切換成不同的模式,也可以將多餘能量儲存至超級電容上,在太陽能電池能量不足時可以藉由超級電容對輸出進行供電,以維持輸出的穩定度。
    應用於光獵能系統之單電感升降壓轉換器使用TSMC 0.18-μm CMOS標準製程實現,其輸出負載電流範圍坐落於0.001~1mA,量測結果顯示在負載電流為1mA時,達到最高能量轉換效率90.8%,具備最大功率追蹤功能可在不同光源下追縱最大功率電點電壓,且可以根據獵能環境的條件自動切換模式,所測得最高追蹤效率為98.8%,在太陽能電池完全沒有功率輸入時,也能維持輸出的穩定度。


    In this thesis, a buck-boost converter applied to a solar energy harvesting system is introduced to supply power to IoT sensor node. To continuously supply power to the load at all the times, this work proposes a mode switching architecture which not only switches to different modes according to different environments but also stores the excess energy to the supercapacitor. The energy stored in supercapacitor can be applied to the load whenever the solar cell doesn’t generate enough power.
    This interface based on a single-inductor Buck-Boost converter for light-harvesting is designed with a TSMC’s 0.18µm standard CMOS process. The proposed converter is designed to provide 0.001 – 1mA output current to supply enough energy to the load. A maximum power point tracking (MPPT) controller is also designed to harvest the most energy from solar cell. The measurement results have shown a tracking efficiency is 98.8%, peak conversion efficiency of 90.8% at 1mA load current which is among the best compared to the prior arts.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 論文架構 2 第二章 太陽能電池與最大功率追蹤介紹 3 2-1 太陽能電池 3 2-1-1 PN接面 3 2-1-3 太陽能電池特性 4 2-1-4 正、背面受光太陽能電池架構 7 2-1-5 太陽能電池規格 7 2-2 最大功率追蹤演算法介紹 8 2-2-1 擾動觀察法(Perturb and Observe) 9 2-2-2 增量電導法(Incremental Conductance) 11 2-2-3 開路電壓法(Fractional Voc) 12 2-2-4 短路電流法(Fractional ISC) 13 第三章 切換式直流至直流轉換器介紹 14 3-1 功率級 14 3-1-1 連續導通模式 17 3-1-2 邊界導通模式 19 3-1-3 不連續導通模式 21 3-2 控制級 23 3-2-1 電壓模式控制 24 3-2-2 電流模式控制 26 3-2-3 漣波控制技術 30 3-2-4 自適性導通時間控制技術 31 3-3 效率考量 37 3-3-1 導通損失 37 3-3-2 切換損失 38 3-3-3 驅動損失 39 3-4 切換式直流至直流轉換器規格 39 3-4-1 負載調節率 40 3-4-2 線性調節率 40 3-4-3 負載暫態響應 40 3-4-4 輸出電壓漣波 41 3-4-5 能量轉換效率 42 第四章 設計與實現 43 4-1 應用於光獵能系統電源管理晶片設計 43 4-1-1 設計標的 43 4-1-2 整體架構介紹 43 4-1-3 自適性導通時間控制器 44 4-1-4 具休眠機制的零電流偵測器 46 4-1-5 比較器 50 4-1-6 最大功率追蹤電路 58 4-1-7 非重疊電路、驅動電路與位準位移電路 61 4-1-8 模式控制電路 63 4-1-9 超低功耗電壓參考電路 67 4-1-10 防震盪電路 68 第五章 模擬與量測結果 69 5-1 模擬結果 69 5-1-1 子區塊模擬 70 5-1-2 穩態操作模擬 73 5-1-3 暫態響應模擬 76 5-2 量測考量與結果 79 5-2-1 關閉MPPT量測結果 80 5-2-1 開啟MPPT量測結果 86 5-3 轉換效率 90 第六章 結論與未來展望 92 6-1 結論 92 6-2 效能比較 93 6-3 未來展望 94 參考文獻 95

    [1]國家實驗研究室. Smart City 2.0:「智慧物聯網」引領「智慧城市」再升級. Available: https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0J098497915837716796#
    [2]科技新報. (2019). 研調:今年全球 IT 支出估增 3.2%,重心轉向雲端服務、IoT. Available: https://technews.tw/2019/02/12/gartner-it-spending-cloud-iot/
    [3]經濟部工業局智慧電子產業計畫推動辦公室. (2018). 物聯網產業現況. Available: https://www.sipo.org.tw/industry-overview/industry-state-quo/iot-industry-state-quo.html
    [4]台北市政府. 智慧路燈,建構智慧城市的重要基石. Available: https://smartcity.taipei/project/21#projectIntro
    [5]東典科技. 智慧工廠管理模組. Available: https://www.geasycloud.com/product_menu01.php
    [6]久德電子. 智慧農業-環境監控解決方案. Available: http://www.jetec.com.tw/chinese/application_PlantFactory.html
    [7]R. D. Prabha and G. A. Rincón-Mora, "Drawing the Most Power From Low-Cost Single-Well 1-mm2 CMOS Photovoltaic Cells," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 1, pp. 46-50, 2017.
    [8]顧鴻濤, 太陽能電池元件導論 材料、元件、製程、系統, 二版 ed. 新北市五股區: 全威, pp. 6,423.
    [9]R. D. Prabha and G. A. Rincon-Mora, "Drawing the Most Power From Low-Cost Single-Well 1-mm2 CMOS Photovoltaic Cells," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 1, pp. 46-50, 2017.
    [10]A. Khaligh and O. C. Onar, Energy harvesting : solar, wind, and ocean energy conversion systems. 2010.
    [11]Y. Hung, Y. Cheng, M. Cai, C. Lu, and H. Su, "High-Voltage 12.5-V Backside-Illuminated CMOS Photovoltaic Mini-Modules," IEEE Journal of the Electron Devices Society, vol. 6, pp. 135-138, 2018.
    [12]T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
    [13]A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, "High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids," IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1010-1021, 2011.
    [14]T. Hsu, H. Wu, D. Tsai, and C. Wei, "Photovoltaic Energy Harvester With Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257-261, 2019.
    [15]S. Yuvarajan and X. Shanguang, "Photo-voltaic power converter with a simple maximum-power-point-tracker," in Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03., 2003, vol. 3, pp. III-III.
    [16]梁適安, 交換式電源供給器之理論與實務設計, 二版 ed. 新北市土城區: 全華, 2008, pp. 10,389.
    [17]K.-H. Chen, in Power Management Techniques for Integrated Circuit Design, 2016, pp. 10,520.
    [18]R. W. Erickson, D. Maksimovic, and SpringerLink (Online service), Fundamentals of power electronics [electronic resource], 2nd ed. Norwell, Mass.: Kluwer Academic, 2004, pp. xxi, 883 p.
    [19]B. Razavi, Design of analog CMOS integrated circuits, Second ed. New York, NY: McGraw-Hill Education, 2016, pp. xviii, 782 pages.
    [20]吳義利, 切換式電源轉換器 原理與實用設計技術(實例設計導向), 二版 ed. 高雄市: 文笙.
    [21]O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang, and I. Batarseh, "Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, 2008.
    [22]G. Yuan, W. Shenglei, L. Haiqi, C. Leicheng, F. Shiquan, and G. Li, "A novel zero-current-detector for DCM operation in synchronous converter," in 2012 IEEE International Symposium on Industrial Electronics, 2012, pp. 99-104.
    [23]D. Xin, H. Chengming, X. Hanqing, C. Degang, and R. Geiger, "An Nth order central symmetrical layout pattern for nonlinear gradients cancellation," in 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 4835-4838 Vol. 5.
    [24]J. P. A. vanderWagt, G. G. Chu, and C. L. Conrad, "A Layout Structure for Matching Many Integrated Resistors," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 51, no. 1, pp. 186-190, 2004.
    [25]P. E. Allen and D. R. Holberg, CMOS analog circuit design, 3rd ed. New York ; Oxford: Oxford University Press USA, 2012, pp. xvi, 757 p.
    [26]A. C. d. Oliveira, D. Cordova, H. Klimach, and S. Bampi, "Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3036-3046, 2017.
    [27]R. Damodaran Prabha and G. A. Rincon-Mora, "0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2950-2958, 2016.
    [28]賴秀全, "應用在802.11a及WIMAX/UWB之低雜訊放大器晶片設計," 碩士, 積體電路設計研究所, 國立彰化師範大學, 彰化縣, 2008.
    [29]H. Kim, S. Kim, C.-K. Kwon, Y.-J. Min, C. Kim, and S.-W. Kim, "An Energy-Efficient Fast Maximum Power Point Tracking Circuit in an 800-μW Photovoltaic Energy Harvester," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2927-2935, 2013.
    [30]G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, "A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter With Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2758-2772, 2015.
    [31]C.-W. Liu, H.-H. Lee, P.-C. Liao, Y.-L. Chen, M.-J. Chung, and P.-H. Chen, "Dual-Source Energy-Harvesting Interface With Cycle-by-Cycle Source Tracking and Adaptive Peak-Inductor-Current Control," IEEE Journal of Solid-State Circuits, vol. 53, no. 10, pp. 2741-2750, 2018.
    [32]M. Chang and S. Liu, "An Indoor Photovoltaic Energy Harvester Using Time-Based MPPT and On-chip Photovoltaic Cell," IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1-1, 2020.

    無法下載圖示 全文公開日期 2025/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE