簡易檢索 / 詳目顯示

研究生: 紀妏蒨
Wen-Chien Chi
論文名稱: 以光觸媒催化程序外加電位處理水溶液中氨氮之研究
Treatment of Ammonia in Aqueous Solution by Photocatalytic Process with Applying Bias Potential
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 96
中文關鍵詞: 光催化程序光電催化程序氨氮降解二氧化鈦
外文關鍵詞: photocatalytic, photoelectrocatalytic, ammonia degradation, TiO2
相關次數: 點閱:232下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之主要目的係探討利用光催化及光電催化程序降解氨氮來探討初始pH值、光源強度、初始溶氧濃度、初始過氧化氫濃度與施加偏壓之大小等變因之影響。在光催化程序中,鹼性條件下,隨著初始pH值上升,氨氮降解之效率隨之增加;然而,在中性及酸性條件下,則沒有氨氮被光催化程序降解。電子電洞對在光觸媒表面上被激發,電洞與觸媒表面之水分子反應生成氫氧自由基,促使氨氮降解。實驗結果中指出隨著光源強度增強,單位時間單位面積提供之光子數將增加,有較好之氨氮降解效率。水中溶氧及過氧化氫可視為電子捕捉劑,與光激發生成之電子反應分別生成超氧自由基及氫氧自由基,不僅抑制了光激發生成之電子電洞對再結合,生成之自由基亦與氨反應,提升氨氮降解之效率;然而,若在水溶液中添加過量的過氧化氫,過氧化氫及其生成之超氧化氫自由基會與氫氧自由基反應,使得氨氮降解之效率下降。
在光電催化程序中,施加偏壓可將在光陽極上生成之電子經由外部迴路導向陰極,減少電子電洞對再結合,進而增加的氨氮降解效率,氨氮降解之效率隨著施加偏壓上升而增加。在有水中溶氧之條件下再施加偏壓可再提升氨氮之降解效率,然而氨氮降解之效率不隨施加偏壓上升而增加。


Photocatalytic and photoelectrocatalytic degradation of ammonia in aqueous solution was studied under various initial solution pH, light intensity, initial dissolved oxygen concentration, initial hydrogen peroxide concentration and bias potential. The photocatalytic degradation of ammonia was found to be enhanced with the increase of initial solution pH under alkaline condition, whereas there was no ammonia degradation occurred in acidic and neutral solutions. The photocatalytic degradation of ammonia enhanced with increasing light intensity in alkaline solution. The removal efficiencies of photocatalytic degradation of ammonia increased to certain extent with the initial concentration of dissolved oxygen and hydrogen peroxide present in aqueous solution. Furthermore,degradation of ammonia by photoelectrocatalytic process in alkaline solution was increased with the increase of application of bias potential. With dissolved oxygen concentration, the increase of bias potential didn’t contribute to enhancement of ammonia degradation.

中文摘要 Abstract Acknowledgements Table of Contents List of Figures List of Tables List of Symbols Chapter 1 Introduction Chapter 2 Review of Literatures 2.1 Introduction of Ammonia 2.1.1 The Physical and Chemical Properties of Ammonia 2.1.2 The Sources of Ammonia in Water Body and its Consequences 2.2 Photocatalytic Process 2.2.1 Fundamental of Photocatalytic Process and Photocatalytic Properties of TiO2 2.2.2 Reaction Mechanisms of Photocatalytic Process 2.2.3 Operating Factors Affecting Photocatalytic Reactions in Aqueous Solutions 2.2.3.1 Solution pH 2.2.3.2 Light Intensity 2.2.3.3 Dissolved Oxygen Concentration 2.2.3.4 Hydrogen Peroxide Concentration 2.3 Photoelectrocatalytic Process 2.3.1 Fundamental of Photoelectrocatalytic Process 2.3.2 Reaction Mechanisms of Photoelectrocatalytic Process 2.3.3 Operating Factors Affecting Photoelectrocatalytic Reactions in Aqueous Solutions 2.3.3.1 Effect of Bias potential 2.4 Kinetic Analysis Chapter 3 Materials and Experiments 3.1 Materials 3.2 Experimental Instruments and Apparatus 3.2.1 Experimental Instruments 3.2.2 Experimental Apparatus 3.3 Experimental Framework 3.4 Experimental Procedures 3.4.1 Coating Procedure of Photocatalysts 3.4.2 Photocatalytic and Photoelectrocatalytic Degradation of Ammonia Chapter 4 Results and Discussion 4.1 Background Experiments 4.1.1 Evaporation of Ammonia 4.1.2 Adsorption of Ammonia 4.1.3 Photocatalytic of Ammonia 4.1.4 Electrolysis of Ammonia 4.1.5 Degradation of Ammonia by UV/H2O2 process 4.1.6 Characterization of Photocatalysts 4.2 Photocatalytic and Photoelectrocatalytic Degradation of Ammonia in Aqueous Solutions over TiO2 Photoanode 4.2.1 Effect of Initial solution pH 4.2.2 Effect of Light Intensity 4.2.3 Effect of Initial Dissolved Oxygen Concentration 4.2.4 Effect of Initial Hydrogen Peroxide Concentration 4.2.5 Effect of Bias potential 4. 3 Kinetic Analysis of Degradation of Ammonia in Aqueous Solutions 4.3.1 Kinetic Analysis 4.3.2 Proposed Mechanism Chapter 5 Conclusion and Recommendation Reference

Altomare, M., Chiarello, G. L., Costa, A., Guarino, M. and Selli, E., "Photocatalytic Abatement of Ammonia in Nitrogen-Containing Effluents", Chem. Eng. J., Vol. 191l, pp. 394-401 (2012).

An, T. C., Zhu, X. H. and Xiong, Y., "Feasibility Study of Photoelectrochemical Degradation of Methylene Blue with Three Dimensional Electrode Photocatalytic Reactor", Chemosphere, Vol. 46l, pp. 897-903 (2002).

Arthur, J. W., West, C. W., Allen, K. N. and Hedtke, S. F., "Seasonal Toxicity of Ammonia to Five Fish and Nine Invertebrate Species", Bulletin of Environmental Contamination and Toxicology, Vol. 38l, pp. 324-331 (1987).

Bahnemann, D. W., Hilgendorff, M. and Memming, R., "Charge Carrier Dynamics at TiO2 Particles: Reactivity of Free and Trapped Holes", J. Phys. Chem. B, Vol. 101l, pp. 4265-4275 (1997).

Beltran, F., Ovejero, G. and Acedo, B., "Oxidation of Atrazine in Water by Ultraviolet Radiation Combined with Hydrogen Peroxide", Water Research, Vol. 27l, pp. 1013-1021 (1993).

Chiu, P. C., "Treatment of Aniline in Aqueous Solution by UV/ TiO2 Process with Applying Bias Potential", Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (2008).

Cornish, B. J. P. A., Lawton, L. A. and Robertson, P. K. J., "Hydrogen Peroxide Enhanced Photocatalytic Oxidation of Microcystin-Lr Using Titanium Dioxide", Applied Catalysis B: Environmental, Vol. 25l, pp. 59-67 (2000).

Dionysiou, D. D., Suidan, M. T., Bekou, E., Baudin, I. and Laı̂né, J. M., "Effect of Ionic Strength and Hydrogen Peroxide on the Photocatalytic Degradation of 4-Chlorobenzoic Acid in Water", Applied Catalysis B: Environmental, Vol. 26l, pp. 153-171 (2000).

Elsellami, L., Vocanson, F., Dappozze, F. Puzenat, E. Païsse, O. Houas, A. and Guillard, C., "Kinetic of Adsorption and of Photocatalytic Degradation of Phenylalanine Effect of Ph and Light Intensity", Applied Catalysis A: General, Vol. 380l, pp. 142-148 (2010).

Fan, Z. R., "Effects of TiO2 Nanotube Arrays Dimension on the Degradation of Acid Red 4 in Aqueous Solution", Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (2010).

Fogler, H. S. "Elements of Chemical Reaction Engineering Fourth Edition, Pearson Education International," United State: Pearson,United State: Pearson (2006).

Fujishima, A., "Electrochemical Photolysis of Water at a Semiconductor Electrode", nature, Vol. 238l, pp. 37-38 (1972).

Garcia-Segura, S., Dosta, S., Guilemany, J. M. and Brillas, E., "Solar Photoelectrocatalytic Degradation of Acid Orange 7 Azo Dye Using a Highly Stable TiO2 Photoanode Synthesized by Atmospheric Plasma Spray", Applied Catalysis B: Environmental, Vol. 132–133l, pp. 142-150 (2013).

Hirakawa, T. and Nosaka, Y., "Properties of O2•- and OH• Formed in TiO2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H2O2 and Some Ions", Langmuir, Vol. 18l, pp. 3247-3254 (2002).

Hirakawa, T., Yawata, K. and Nosaka, Y., "Photocatalytic Reactivity for O2− and OH Radical Formation in Anatase and Rutile TiO2 Suspension as the Effect of H2O2 Addition", Applied Catalysis A: General, Vol. 325l, pp. 105-111 (2007).

Ho, P. C., "Photooxidation of 2,4-Dinitrotoluene in Aqueous Solution in the Presence of Hydrogen Peroxide", Environmental Science & Technology, Vol. 20l, pp. 260-267 (1986).

Hou, W. M. and Ku, Y., "Photoelectrocatalytic Decomposition of Gaseous Isopropanol in a Polymer Electrolyte Photoreactor", J. Solid State Electrochem., Vol. 17l, pp. 737-741 (2013).

Jaeger, C. D. and Bard, A. J., "Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at Titanium Dioxide Particulate Systems", The Journal of Physical Chemistry, Vol. 83l, pp. 3146-3152 (1979).

Jiang, D., Zhao, H., Zhang, S., John, R. and Will, G. D., "Photoelectrochemical Measurement of Phthalic Acid Adsorption on Porous TiO2 Film Electrodes", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 156l, pp. 201-206 (2003).

Kim, S. B. and Hong, S. C., "Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst", Applied Catalysis B: Environmental, Vol. 35l, pp. 305-315 (2002).

Kormann, C., Bahnemann, D. W. and Hoffmann, M. R., "Photolysis of Chloroform and Other Organic Molecules in Aqueous Titanium Dioxide Suspensions", Environmental Science & Technology, Vol. 25l, pp. 494-500 (1991).

Ku, S. C., "Effect of Periodic Illumination on Photocatalytic Decomposition of Bisphenol a in Aqueous Solutions Using UV-LEDs ", Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (2012).

Ku, Y., Chiu, P. C. and Chou, Y. C., "Decomposition of Aniline in Aqueous Solution by UV/ TiO2 Process with Applying Bias Potential", J. Hazard. Mater., Vol. 183l, pp. 16-21 (2010).

Ku, Y., Lee, Y. C. and Wang, W. Y., "Photocatalytic Decomposition of 2-Chlorophenol in Aqueous Solution by UV/TiO2 Process with Applied External Bias Voltage", J. Hazard. Mater., Vol. 138l, pp. 350-356 (2006).

Leng, W., Liu, H., Cheng, S. a., Zhang, J. and Cao, C., "Kinetics of Photocatalytic Degradation of Aniline in Water over TiO2 Supported on Porous Nickel", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 131l, pp. 125-132 (2000).

Liu, G., Liang, S., Wu, W., Lin, R., Qing, N., Liang, R. and Wu, L., "Template-Free Synthesis of a CdSnO3⋅ 3H2O Hollow-Nanocuboid Photocatalyst Via a Facile Microwave Hydrothermal Method", Nanotechnology, Vol. 24l, pp. 255601 (2013).

Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D. A., Murakami, T. and Fujishima, A., "Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol", The Journal of Physical Chemistry C, Vol. 112l, pp. 253-259 (2008).

Mikami, I., Aoki, S. and Miura, Y., "Photocatalytic Oxidation of Aqueous Ammonia in the Presence of Oxygen over Platinum-Loaded TiO2", Chem. Lett., Vol. 39l, pp. 704-705 (2010).

Ollis, D. F., Pelizzetti, E. and Serpone, N., "Photocatalyzed Destruction of Water Contaminants", Environmental Science & Technology, Vol. 25l, pp. 1522-1529 (1991).

Roney, N., Llados, F., Little, S. and Knaebel, D. "Toxicological Profile for Ammonia," Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2004).

Sauer, T., Cesconeto Neto, G., José, H. J. and Moreira, R. F. P. M., "Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 149l, pp. 147-154 (2002).

Shavisi, Y., Sharifnia, S., Hosseini, S. N. and Khadivi, M. A., "Application of TiO2/Perlite Photocatalysis for Degradation of Ammonia in Wastewater", J. Ind. Eng. Chem., Vol. 20l, pp. 278-283 (2014).

Shen, Y., Ku, Y. and Lee, K., "The Effect of Light Absorbance on the Decomposition of Chlorophenols by Ultraviolet Radiation and UV/H2O2 Processes", Water Research, Vol. 29l, pp. 907-914 (1995).

Shibuya, S., Aoki, S., Sekine, Y. and Mikami, I., "Influence of Oxygen Addition on Photocatalytic Oxidation of Aqueous Ammonia over Platinum-Loaded TiO2", Applied Catalysis B: Environmental, Vol. 138–139l, pp. 294-298 (2013).

Sun, C. C. and Chou, T. C., "Electrochemically Promoted Photocatalytic Oxidation of Nitrite Ion by Using Rutile Form of TiO2/Ti Electrode", J. Mol. Catal. A: Chem., Vol. 151l, pp. 133-145 (2000).

Turchi, C. S. and Ollis, D. F., "Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack", J. Catal., Vol. 122l, pp. 178-192 (1990).

Villacres, R., Ikeda, S., Torimoto, T. and Ohtani, B., "Development of a Novel Photocatalytic Reaction System for Oxidative Decomposition of Volatile Organic Compounds in Water with Enhanced Aeration", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 160l, pp. 121-126 (2003).

Wang, G. S., Hsieh, S. T. and Hong, C. S., "Destruction of Humic Acid in Water by UV Light-Catalyzed Oxidation with Hydrogen Peroxide", Water Research, Vol. 34l, pp. 3882-3887 (2000).

Wang, H., Su, Y., Zhao, H., Yu, H., Chen, S., Zhang, Y. and Quan, X., "Photocatalytic Oxidation of Aqueous Ammonia Using Atomic Single Layer Graphitic-C3N4", Environmental Science and Technology, Vol. 48l, pp. 11984-11990 (2014).

Wang, L. S., "Decomposition of Nitrogen-Containing Compounds in Aqueous Solution by UV/Hydrogen Peroxide Process", Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei, (1993).

Wang, Y. and Hong, C. S., "Effect of Hydrogen Peroxide, Periodate and Persulfate on Photocatalysis of 2-Chlorobiphenyl in Aqueous TiO2 Suspensions", Water Research, Vol. 33l, pp. 2031-2036 (1999).

Wei, T. Y., Wang, Y. Y. and Wan, C. C., "Photocatalytic Oxidation of Phenol in the Presence of Hydrogen Peroxide and Titanium Dioxide Powders", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 55l, pp. 115-126 (1990).

Xie, Y. B. and Li, X. Z., "Preparation and Characterization of TiO2/Ti Film Electrodes by Anodization at Low Voltage for Photoelectrocatalytic Application", J. Appl. Electrochem., Vol. 36l, pp. 663-668 (2006).

Yang, J., Dai, J., Chen, C. and Zhao, J., "Effects of Hydroxyl Radicals and Oxygen Species on the 4-Chlorophenol Degradation by Photoelectrocatalytic Reactions with TiO2-Film Electrodes", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 208l, pp. 66-77 (2009).

Youn, N. K., Heo, J. E., Joo, O. S., Lee, H., Kim, J. and Min, B. K., "The Effect of Dissolved Oxygen on the 1,4-Dioxane Degradation with TiO2 and Au–TiO2 Photocatalysts", J. Hazard. Mater., Vol. 177l, pp. 216-221 (2010).

Yuzawa, H., Mori, T., Itoh, H. and Yoshida, H., "Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst", The Journal of Physical Chemistry C, Vol. 116l, pp. 4126-4136 (2012).

Zanoni, M. V. B., Sene, J. J. and Anderson, M. A., "Photoelectrocatalytic Degradation of Remazol Brilliant Orange 3R on Titanium Dioxide Thin-Film Electrodes", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157l, pp. 55-63 (2003).

Zhang, J., Zhou, P., Liu, J. and Yu, J., "New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2", PCCP, Vol. 16l, pp. 20382-20386 (2014).

無法下載圖示 全文公開日期 2020/08/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE