簡易檢索 / 詳目顯示

研究生: 蕭戶順
Hu-shun Hsiao
論文名稱: 鈷、鎳、錫添加對銅鈰觸媒應用於富氫情況下一氧化碳氧化反應影響之研究
The effect of Co, Ni, Sn addition on Cu/Ce catalysts for CO oxidation under hydrogen rich condition
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 劉端祺
Tuan-Chi Liu
李嘉平
Chia-Pyng Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 一氧化碳氧化反應銅鈰觸媒
外文關鍵詞: CO oxidation reaction, Cu/Ce catalyst, Co, Ni, Sn
相關次數: 點閱:231下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本研究目的在於探討不同比例之奈米級銅鈰觸媒,並添加不同莫耳含量的促進劑(Co、Ni、Sn)取代銅鈰觸媒中鈰的含量,於富氫情況下進行一氧化碳氧化反應的活性測試。觸媒是以 sol-gel法製備,凝膠溶劑則是選用citric acid。觸媒鍛燒溫度範圍為400~700℃。在觸媒特性的研究上,採用BET、XRD、TPR等儀器來進行分析。
由BET結果得知,添加少量的助觸媒,可以增加銅鈰觸媒的表面積,亦可由此結果知道,鍛燒溫度愈高,容易造成觸媒燒結,導致觸媒表面積減少。XRD分析得知,在500℃鍛燒溫度時,只有偵測到CeO2的特性峰,沒有任何其他的特性峰。在600℃鍛燒溫度以上,則會偵測到金屬銅的特性峰。TPR圖譜分析顯示,添加少量促進劑,可以使還原溫度向低溫偏移。隨鍛燒溫度愈高,β波峰會往高溫偏移,以鍛燒600℃時最為明顯。
由一氧化碳反應的結果發現,添加少量Ni、Sn等金屬皆會增加銅鈰觸媒的反應活性;而添加少量Co金屬則會降低銅鈰觸媒對一氧化碳氧化的能力。在鍛燒溫度對觸媒反應活性的影響方面,實驗得知觸媒會隨著促進劑不同,而有不同的最佳鍛燒溫度。如添加錫金屬在600℃鍛燒時有最好的反應活性,而其它金屬則是以500℃鍛燒時有最高的反應活性。在進料含有水氣的情況下,所有的觸媒反應活性均會因水氣的影響而明顯降低。


Abstract
The major purpose of this study is to investigate the effect of Co, Ni, Sn addition on CuO-CeO2 catalysts for CO oxidation under rich hydrogen. The catalysts were prepared by sol-gel method and citric acid was used as chelating agent. The calcination temperature varied from 500℃ to 700℃. All the catalysts were characterized by BET, TPR and XRD.
BET analyses showed that small amount addition of promoter can increase the BET surface area of CuO-CeO2 catalysts. The BET surface area decreased with increasing calcination temperature for all the catalysts. The XRD patterns showed that only CeO2 peaks were found for all the catalysts when calcined at 500℃. However, when the calcined temperature rose to 600℃, a small Cu peak was detected. The TPR profiles showed adding less promoter into CuO-CeO2 catalysts could cause the reduction peak shift toward lower temperature. With higher calcination temperature, the β peak would shift toward higher temperature.
For CO oxidation under rich hydrogen, the addition of Ni、Sn would increase the Cu/Ce catalyst activity but Co decreases the catalyst activity. The experimental data showed that the optimal calcination temperature for the catalyst activity depends on the promoter added. For Sn addition, the optimal calcination temperature is 600℃, while for the other promoters, the optimal calcination temperature is 500℃. Expermental also found that all the catalysts would be deactivated by water vapor.

目錄 摘要 I 目錄 IV 圖表索引 VI 符號說明 X 第一章 緒論 1 第二章 文獻回顧 3 2.1 CO氧化反應 3 2.2銅觸媒 6 2.3助觸媒 9 2.4氧化鈰…………………………………………………………... 13 2.5鍛燒溫度的影響…………………………………………………20 2.6程式升溫還原……………………………………………………23 第三章 實驗方法與步驟 27 3.1 實驗藥品、氣體與儀器設備 27 3.1.1 藥品 27 3.1.2 氣體 28 3.1.3 儀器設備 28 3.2 觸媒的製備 30 3.2.1 檸檬酸溶膠凝膠法 30 3.3 觸媒的特性鑑定 33 3.3.1 BET表面積測定與孔徑大小分佈測定 34 3.3.2 愛克斯光繞射分析(XRD) 37 3.3.3 程式升溫還原(TPR) ……38 3.4 觸媒反應裝置與反應步驟 39 3.4.1 反應裝置 39 3.4.2 反應條件 39 3.4.3 反應步驟 40 3.4.4 轉化率的計算 40 第四章 結果與討論 43 4.1 觸媒鑑定 43 4.1.1 BET表面積與平均孔徑 43 4.1.2 X-Ray繞射分析(XRD) 44 4.1.3 程式升溫還原 (TPR) 51 4.2 觸媒反應活性 58 4.2.1銅鈰比例對富氫下一氧化碳氧化反應的影響 58 4.2.2 添加劑(Co、Ni、Sn)對富氫下一氧化碳氧化反應的影響 59 4.2.3 不同鍛燒溫度對反應活性的影響 63 4.2.4 水氣對觸媒催化活性的影響 66 第五章 結論 68 參考文獻…………..…………………………………………………..70 圖表索引 圖2-1螢石型氧化物之結構 14 表3- 1銅鈰觸媒之種類與代號 31 表3- 2銅鈰鈷、銅鈰鎳、銅鈰錫觸媒之種類與代號 33 圖3- 1表面積與孔隙測定儀 36 圖3- 2 反應裝置圖 42 表4- 1銅鈰觸媒的BET總表面積 44 表4- 2銅鈰觸媒在不同鍛燒溫度的BET總表面積 44 表4- 3銅鈰鈷觸媒的BET總表面積 44 圖4- 1 XRD spectrum for CuCe series catalysts at 500℃ calcination temperature 46 圖4- 2 XRD spectrum for CuCeCo series catalysts at 500℃calcination temperature 46 圖4- 3 XRD spectrum for CuCeNi series catalysts at 500℃calcination temperature 47 圖4- 4 XRD spectrum for CuCeSn series catalysts at 500℃calcination temperature 48 圖4- 5 XRD spectrum for CuCe-3 catalyst at different calcination temperature. 49 圖4- 6 XRD spectrum for CuCeCo-2 catalyst at different calcination temperature 50 圖4- 7 XRD spectrum for CuCeNi-3 catalyst at different calcination temperature 50 圖4- 8 XRD spectrum for CuCeSn-2 catalyst at different calcination temperature 51 圖4- 9 TPR spectrum of CuCe series catalysts at 500℃calcination temperature 52 圖4- 10 TPR spectrum of CuCeCo series catalysts at 500℃calcination temperature 53 圖4- 11 TPR spectrum of CuCeNi series catalysts at 500℃calcination temperature 54 圖4- 12 TPR spectrum of CuCeSn series catalysts at 500℃calcination temperature 55 圖4- 13 TPR spectrum of CuCe-3 catalyst at different calcination temperature 56 圖4- 14 TPR spectrum of CuCeCo-2 catalyst at different calcination temperature 57 圖4- 15 TPR spectrum of CuCeNi-3 catalyst at different calcination temperature 57 圖4- 16 TPR spectrum of CuCeSn-2 catalyst at different calcination temperature 58 圖4- 17 Catalyst activity of CuCe series catalysts at 500℃calcination temperature 59 圖4- 18 Catalyst activity of CuCeCo series catalysts at 500℃ calcination temperature 60 圖4- 19 Catalyst activity of CuCeNi series catalysts at 500℃ calcination temperature. 62 圖4- 20 Catalyst activity of CuCeSn series catalysts at 500℃ calcination temperature 63 圖4- 21 Catalyst activity of CuCe-3 catalyst at different calcination temperature. 64 圖4- 22 Catalyst activity of CuCeCo-2 catalyst at different calcination temperature. 65 圖4- 23 Catalyst activity of CuCeNi-3 catalyst at different calcination temperature. 65 圖4- 24 Catalyst activity of CuCeSn-2 catalyst at different calcination temperature. 66 圖4- 25 Catalyst activity of different catalyst with or without water vapor at 500℃ calcination temperature…………………………..67 符號說明 V:壓力為P時之吸附氣體體積,cc/g Vm:單層吸附時的吸附氣體體積,cc/g P0:測試溫度下吸附氣體的飽和蒸氣壓,mmHg C:與氣體吸附熱和凝結熱有關之常數 S:觸媒表面積,m2/g Nav:亞佛加厥數,6.02 ×1023 molecule/mol α:氮氣分子覆蓋的體積,16.2 ×10-20 m2/molecule ν: 標準狀態下的莫耳體積2.24 ×104cm3/mol

參考文獻
Agudo, A. L., Palacios, J. M., and Fierro, J. L. G., “Activity and Structural Changes of Alumina-Supported CuO and CuCr2O4 Catalysts during Carbon Monoxide in the Presence of Water”, Appl. Catal. A: 91, 43 (1992).

Alder, S. F. and Keavney, J. J., “The Physical Nature of Supported Platinum”, J. Phys. Chem.64, 208 (1960).

Barbier, J., Dumas, J. M., Geron, C. and Hadrane, H., “Copper as a Sacrifical Deposit on Noble Metallic Catalysts”, Appl. Catal., 67, L1
(1990).

Bijsterbosch, J. W., Kapteijn, F., and Moulijn, J. A., “In Situ FT-IR Study of Copper-Chromium Oxide Catalysts in CO Oxidation”, I. Mol. Catal.74, 193 (1992).

Boudeville, Y., and WolfE. E., “Monte Carlo Simulation of Temperature Programmed Reaction and Surface Explosion during CO Oxidation on a Pt Catalyst”, Surf. Sci. 297, L127 (1993).

Bunluesin, T, Gorte, R. J.,and Graham., “CO Oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts” Appl.Catal. B:14, 105-115 (1997).

Brogan, M. S., Dines, T. J. And Cairns, J. A., “Raman-Spectroscopic Study of the Pt-CeO2 Interation in the Pt Al2O3- CeO2 Catalysts.” J. Chem. Soc. Faraday Trans. 90, 1461 (1994).

Carolyn, C. E., Se, H. Oh., “Effect of Addition on CO Oxidation Kinetics over Alumina Supported Rhodium Catalysts”, J. Catal., 112, 543 (1988).

Chen, P. L. and Chen, I. W., “Role of Defect Interaction in Boundary
Mobility and Cation Diffusivity of CeO2”, J. Am. Ceram. Soc., 77,
191 (1994).

Chen, Y. Z., Liaw, B. J., Huang, C. W., “Selective oxidation of CO in excess hydrogen over CuO/CeXSn1-XO2 catalysts”, Appl. Catal. A: General., 302, 168-176 (2006).

Cho, B. K., “Chemical Modification of Catalyst Support for Enchamcement of Transient Catalytic Activity : Nitric oxide Reduction by Carbon Monoxide over Rhodium”, J. Catal., 131, 74 (1991).

Cvetanovic , R. J., Amemomiya, Y., “Temperature-Pregrammed Desorption and Reaction :Applications to Supported Catalyst”, Catal. Rev. Sci. Eng., 25(2), 141 (1983).

Dekker, N. J., Hoon, J., Stegenga, S., Kapteijn, F. and Moulj, J. A.,“Kinetics of the CO oxidation by O2 and N2O over Cu-Cr/Al2O3”,
AICHE. J., 38, 385 (1992).

Dumas, J.M. and Barbier, T., “Preparation of Supported Copper Catalyst II. Reduction of Copper/Alumina Catalists”, Appl. Catal., 47, L9 (1989).

EI-Shobaky, H. G., and Mohmamad Mokhtar, Gamil A.EI- Shobaky, “Physicochemical surface and catalytic properties of CuO-ZnO/Al2O3 system”, Appl. Catal. A: General 180, p335-344 (1999).

Friedam, R. M., Freman, J. J., and Lytle, F. W.,“Characterization of Cu/Al2O3 Catalysts” J. Catal. 55, 10 (1978).

Haouas, A., Nogier, J. Ph., Fraissard, J., “On the Kinetic Oxidation of Traces of CO on CuO-SnO2 Catalysts”, Catal. Today, 17, 1-2, 63(1993).

Harrison, P. G., Ball, I. K., Azelee, W., Daniell, W. and Goldfarb, D. “Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-oxidation catalysts” Chem. Mater., 12., 3715-3725 (2000).

Huang, T. J., Yu, T.C.,and Chang, S. H., “Effect of Calcination Atmosphere on CuO/γ-Al2O3 Catalyst for Carbon Monoxide Oxidation and Nitric Oxide Reduction”, Appl. Catal., 52, 157 (1989).

Huang, T. J., and Yu, T.C., “Calcination Conditions on Copper/Alumina Catalysts for Carbon Monoxide and Nitric Oxide Reduction”, Appl. Catal., 71, 275 (1991).

Hurst, M. W., Gentry, S. J., Health, A. J. and McNicol, B. D., “Temperature-Programmed Reduction”, Catal. Rev. Sci. Eng., 24, 233 (1982).

Hyun-Seog Roh, H.S. Potdar, Ki-Won Jun, Sang Yun Han, and Jae-Woo Kim “Low temperature selective CO oxidation in excess of H2 over
Pt/CeAZrO2 catalysts”, Catalysis Letters, 93 (2004).

Larsson, P. O. and Andersson, A., ”Oxides of copper,ceria promoted
copper, manganese and copper manganese on Al2O3 for the combusion of
CO, ethyl acetate and ethanol”, Appl. Catal. B., 24, 175(2000).

C. R. Jung, J. Han, S. W. Nam, T.-H. Lim, S.-A.Hong, H.-I.Lee “Selective oxidation of CO over CuO-CeO2 catalyst:effect of calcintion temperature ”, Catalysis Today , 93-95, 183-190 (2004).

Liao, P. C., Carberry, J. J., Fleisch, T. H. and Wolf, E. E., “CO Oxidation Activity and XPS Studies of Pt-Cu/γ-Al2O3 Bimetallic Catalysts”, J. Catal., 97, 307 (1982).

Liu, W., and Maria F. S., “Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalystⅠ. catalyst composition and activity” , J. Catal., 153, p304-316 (1995).

Liu, W., and Maria F. S., “Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalystⅡ. catalyst characterization and reaction kinetics ” , J. Catal., 153, p304-316
(1995).

Liu, W. and Maria F. S., “Transition metal-promoted oxidation catalysis
by fluorite oxides:A study of CO oxidation over Cu-CeO2”, The Chem.
Eng. Journal, 64, 283 (1996).

Loof, P., Kasemo, B., Andersson, S. and Frestan,A., ”Influence of Ceria
on the Interaction of CO and NO with Highly Dispersed Pt and Rh”, J. Catal., 130, 181 (1991).

Luo, M. F., R. Lin,Y. L. Xie ,Y.J. Zhoung,W.P.Liu, “TPD,TPR study
catalytic activity of CuO/Ce0.7Sn0.3O2 catalysts for low-temperature CO
oxidation” React.Kinet. Catal. Lett., 81(1) 65-71 (2004).

Masahide, S., Nobutsune T. and Haruo K., “Temperature Programmed Reduction of Copper-Silica Catalysts Prepared by Ion Exchange Method”, Bull. Chem. Soc. Jpa., 56, 1337 (1983).

Okuhara, T.,Mains, G.J. and White, J.M., ”Temperature-Programmed Desorption of CO and CO2 from Pt/CeO2. An Important Role for Lattice Oxygen in CO Oxidation”, J. Phys. Chem. 91, 3310-3315 (1987).

Oh, S. H. and Eickel, C. C., ”Effects of Cerium Addition on CO Oxidation kinetics over Alumina-Supported Rhodium Catalysts”, J. Catal., 112, 543 -555 (1988).

Park, J. W., Jeong, J. H., Yoon, W. L. and Rhee, Y. W., “Selective
oxidation of carbon monoxide in hydrogen-rich processor for proton
exchange membrane fuel cells”, Journal Power Sources, 132, 18 (2004).

Pierron, E. D., Rashkin, J. h., and Roth, J. F., “Copper Oxide on AluminaⅠ. XRD Studies of Catalysts Composition during Air Oxidation of Carbon Monoxide”, J. Catal. 9, 38 (1967).

Pfau, A., and Schierbaum, K. D., “The Electronic Structure of Stoichiometric and Reduced CeO2 Sueface: an XPS, UPS and HREELS study”, Surf. Sci., 321, 71 (1994).

Praserthdam, P. and Majitnapakul, T., “Effect of Platinum on Supported Copper Catalysts for Carbon Monoxide Removel”, Appl. Catal. A:General, 108, 21(1994).

Rossi, S. De, Ferraris, G., and Mancini, R., “Compartion of Carbon monoxide and nitrous oxide adsorption on copper/Zinc oxide catalysts” , Appl. Catal., p359-364 (1988).

Robinson, W. R. A. N. and Mol, J. C., “ Characterization and catalytic Activity of Copper/Alumina Methanol Synthesis Catalysts”, Appl. Catal., 44, 165 (1988).

Sanchez, M. G. and Gazquez, J. L., “Oxygen Vacancy Model in Strong
Metal-Support Interaction”, Journal of Catalysis, 140, 120 (1987).

Sayle, T. X. T., Parker, S. C. and Catlow, C. R. A., “The Role of Oxygen Vacancies on Ceria Surface in the Oxidation of Carbon Monoxide”, Surf. Sci., 316, 329 (1994).

Severino, F., Brito, J., Carias, O., and Laine, J., “Comparative Study of Alumina-Supported CuO and CuCr2O4 as Catalysts for CO Oxidation”, J
. Catal. 102, 172 (1986).

Stegenga, S., van Soest, R., Kaptejin, F., and Mounijn, J.A., “Nitric Oxide Teduction and Carbon Monoxide over Carbon-Supported Copper-Chromium Catalysts”, Appl. Catal. B :Environmental 2 , 257 (1993).

Severino, F., Brito, J., and Laine, J., “Surface Coppor Enrichment by Reaction of Copper Chromite Catalyst Employed for Carbon Monoxide Oxidation”, Catal. Let. S, 45 (1990).

Serre, C., Garin, F. and Marie, G., ”Reactivity of Pt/Al2O3 and Pt-CeO2/Al2O¬3 Catalysts for the Oxidation of Carbon Monoxide by Oxygen: II. Influence of the Pretreatment Step on the Oxidation Mechanism”, J. Catal., 141, 9 (1993).

Shelef, M., Otto, K., and Gamdhi, H., “The Oxidation of CO by O2 and by NO on Supported Chromium Oxide and Other Metal Oxide Catalysts”, J. Catal. 12, 361 (1968).

Wei, L., Maria,F.S., “ Transition metal-promoted oxidation catalysis by florite oxides: A study of CO oxidation over Cu-CeO2”. The Chem. Eng. J., 64, 283 (1996).

Wu, S. H., Huanga, W. P., Yu, L. H., Zhang, S. M., Wang, S. R., Wang, X. Y., “Comparison of CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts
for low-temperature CO oxidation”, Catalysis Letters., 105 (2005).

Yao, Y. F. Y., “The Oxidation of CO and C2H4 over Metal Oxides”, J. Catal. 39, 104(1975).

Yao, H. C., and Yao, Y. F. Y., “ Ceria in Auto Motive Exhaust Catalysts: I. Oxygen Storage”,J. Catal., 86, 254 (1984).

Yung, F. Y. Y., ”The Oxidation of CO and Hydrocarbons over Noble
Metal Catalysts”, J. Catal., 87, 152 (1984).

Zheng, X. C., Wang, S. P., Zhang, S. M., Wang, S. R., Huang, W. P. and Wu, S. H., “Characterization and CO oxidation behavior of CuO/CeO2 catalysts”, React. Kinet. Catal. Lett., 84, 29 (2005).

王裕標,碩士論文,國立清華大學(1994)
葉啟瑞,碩士論文,私立逢甲大學(1995)
謝文浩,碩士論文,國立清華大學(1999)
高健益,碩士論文,國立台灣科技大學(2000)
陳信宏,碩士論文,國立台灣科技大學(2000)
施經振,碩士論文,國立清華大學(1995)
張志清,國立中央大學(1992)
李元戎,碩士論文,國立台灣工業技術學院(1997)
涂耀仁,碩士論文,國立中央大學(1989)
張俊雄,碩士論文,大同工學院(1996)
胡恆達,碩士論文,國立清華大學(1984)
林聖欽,碩士論文,國立清華大學(2001)

QR CODE