簡易檢索 / 詳目顯示

研究生: 賴長良
Chang-Liang Lai
論文名稱: 長波段波長可調光纖雷射之參數優化及研製
The Optimum Investigation of L-band Tunable Linear-Cavity Erbium-Doped Fiber Laser (EDFL)
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 黃升龍
none
單秋成
none
陳南光
none
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 光纖光柵自發性輻射掺鉺光纖優化反射率波長可調光纖光柵波長可調光纖雷射
外文關鍵詞: erbium doped fiber, EDF, optimum, tunable FBG
相關次數: 點閱:207下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為優化線性型光纖雷射,首先簡介掺鉺光纖雷射的原理。本論文將利用模擬與實驗來得到線性型掺鉺光纖雷射的最佳參數。。由於Fibercoer公司所公開的掺鉺光纖參數中,但掺鉺光纖之飽和參數為其重要的參數卻未公開。因此本論文間接得到飽合參數為 。利用數學方程式來進行模擬為目前大多數所採用的方法,但利用數學方程式只能得到最後雷射輸出結果,並不能知道光訊號在共振腔內所產生的變化。因此利用Optisystem 6.0來解釋動作原理,並利用圖示更加淺顯易懂。線性型光纖雷射分為前向式架構與後向式架構,接著進而比較此兩種的優劣。前向架構與後向架構的掺鉺光纖長度皆為5m、泵激光源皆為100mW、光纖光柵之反射率皆為50%時,後向式架構的斜線效率為20%;臨界功率為4.5mW;雷射輸出功率為19mW。其特性後向式架構接優於前向式架構。線性型掺鉺光纖的架構種類繁多,因此再跟著介紹線性型掺鉺光纖雷射的演化,從傳統型雙光纖光柵到最後本論文所採用的含BFm與光纖光柵之後向式線性型掺鉺光纖雷射。由實驗與模擬得知掺鉺光纖長度最佳為5m至8m,光纖光柵之反射率最佳為17.5~25%。掺鉺光纖長度為5m與光纖光柵之反射率為20%時,波長為1582nm的斜線效率為33%;臨界功率為4.9mW;雷射輸出功率為30mW,波長為1596nm的斜線效率為25.1%;臨界功率為6mW;雷射輸出功率為23.6mW。後向式線性型掺鉺光纖雷射要擴展至波長可調之掺鉺光纖雷射時,雖然掺鉺光纖長度選擇使用最佳之長度,但光纖光柵之反射率卻是選擇50%,並非選擇最佳之反射率。此因為波長可調的範圍會受光纖光柵之反射率影響。反射率為20%時,波長可調範圍為6nm;反射率為50%時,波長可調範圍為13nm。因此若要波長可調範圍為較大時,則反射率需選擇50%。


The thesis investigates the optimization of linear-cavity erbium-doped fiber laser (EDFL) both in simulation and experiment. The thesis also discusses several parameters which usually not be released by Fiber developed companies likes Fibercore© and so on. The simulation tool here is Optisystem 6.0 and the saturation parameter we suggested is . Based on the mathematical formula, the final output power could be obtained and the light intensity along the cavity could be tracked after parameters are setted. Hereafter, experimentally study the EDFL both in forward pumping and backward pumping schemes are investigated. The length of gain fiber, the pump laser, reflectivity of the fiber Bragg grating (FBG) are 6 M, 100 mW and 50%, respectively. We conclude that the backward pump EDFL has better charactersitics in threshold power and lasing output power than those of the forward pump EDFL. Based on the experimental and simulated results, the most suitable length of EDF is suggested to be 5 to 8m, and the optimum reflectivity of FBG is around 21%. Using a FBG with a center wavelength of 1582 nm, as well as 5M EDF and FBG of 20% reflectivity, a slope efficiency of 33% in 4.9mW threshold power and 30mW laser output power are achieved. Using a FBG with a center wavelength of 1596 nm, the values of them will be 25.1%, 6 mW and 23.6 mW, respectivwly. The fixed-wavelength EDFL structure could be extended into a tunable-type EDFL in the same EDF length while the optimum reflectivity of tunable FBG will be changed to around 50% under the consideration of the extending of tunable range of FBG. For example, the allowable wavelength tunable range are 6nm and 13nm when the reflectivities of FBGs are 20% and 50%, respectively.

摘要 Abstract 圖表索引 目錄 目錄 第一章緒論 1.1前言 1.2研究動機 1.3論文架構 第二章 掺鉺光纖雷射 2.1摻鉺光纖雷射之三階鉺離子速率方程式 2.2自發性輻射(Amplified Spontaneous Emission, ASE) 2.2.1寬頻譜光源介紹 2.2.2前向(Forward)ASE與背向(Backward)ASE 2.2.3掺鉺光纖參數設定 2.3掺鉺光纖雷射理論分析 第三章 L Band線性型摻鉺光纖雷射 3.1前向式線性型掺鉺光纖雷射(Forward EDFL) 3.1.1動作原理 3.1.2實際量測 3.2後向式線性型掺鉺光纖雷射(Backward EDFL) 3.2.1動作原理 3.2.2實際量測 3.3前向式與後向式線性型掺鉺光纖雷射比較 3.3.1Forward ASE & Backward ASE之比較 3.3.2泵激光源再次利用 3.4本章小結 第四章 後向式線性型光纖雷射之優化 4.1優化之重要性 4.2線性型光纖雷射之演化 4.2.1傳統雙光纖光柵架構(Double-FBG EDFL,D-G EDFL) 4.2.2含光循環器與光纖光柵架構(Circulator-FBG EDFL, C-G EDFL) 4.2.3含BFM與光纖光柵架構(BFM-FBG EDFL, B-G EDFL) 4.3掺鉺光纖長度優化 4.3.1掺鉺光纖長度量測 4.3.2探討掺鉺光纖長度與ASE之關係 4.3.3Backward EDFL之ASE討論 4.3.4掺鉺光纖長度優化 4.4光纖光柵反射率優化 4.5本章小結 第五章 波長可調之掺鉺光纖雷射 5.1可調波長之光纖光柵機制 5.1.1簡介 5.1.2波長可調之光纖光柵理論 5.2可調波長之掺鉺光纖雷射 5.3不同反射率之漂移量 5.4不同反射率之討論 5.5本章小結 第六章 結論與未來展望 參考文獻

[1]廖顯奎譯,光纖通訊,高立圖書有限公司,2005。
[2]G. Keiser, FTTx Concepts And Application, New Jersey : John Wiley & Sons, 2006.
[3]洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究,” 國立台灣科技大學碩士論文,2006。
[4]鐘國興,“建構於光纖光柵之光纖雷射研製,”國立台灣科技大學碩士論文,2007。
[5]G. Keiser, Optical Fiber Communications, Tata McGRAW HILL, 2008.
[6]P. W. milonni and J. H. Eberly, Lasers. New York: John Wiley & Sons, 1988.
[7]陳宣臣,“波長可調光纖光柵之研製與應用,”國立台灣科技大學碩士論文,2004。
[8]相偉龍,“長波段光纖雷射之研製,”國立台灣科技大學碩士論文,2007。
[9]L. Xiao , P. Yan, m. Gong, W. Wei and P. Ou, “An approximate analytic solution of strongly pumped Yb-doped double-clad fiber lasers without neglecting the scattering loss, ” Opt. Commun., vol. 230, pp.401-410, 2004.
[10]N. S. Kim, T. Hamada, M. Prabhu, C. Li, J. Song, K. I. Ueda , A. Liu , H. Jin Kong, “Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers, ” Opt. Commun., vol. 180, pp.329-337, 2000.
[11]A. J. Poustie and N. Finlayson, “Multiwavelength fiber laser using a spatial mode beating filter, ” Opt. Lett., vol. 19, pp.716-718, 1994.
[12]G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol., vol. 10, pp. 1338–1343, 1992.
[13]王俊容,“光纖光柵與光循環器組成之光纖雷射,”國立台灣科技大學碩士論文,2005。
[14]P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers, Fundamentals and Technology. New York: Academic, 1999.
[15]B. J. Ainslie, “A review of the fabrication and properties of erbium-doped fibers for optical amplifiers,” J. Lightwave Technol., vol.9, pp. 220-238, 1991.
[16]Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” J. Select. Areas Quantum Electron, vol.3, pp.997-1007, 1997.
[17]C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” J. Lightwave Technol., vol. 9, pp. 271–283, 1991.
[18]E. maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable absorption phenomenon in heavily erbiumdoped silica fibers,” Opt. Lett., vol. 20, no. 24, pp. 2487–2489, 1995.
[19]F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses. ” Elsevier Science, vol. 16, pp. 93-103, 2001.
[20]C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron, vol. 30, pp. 1817–1830, 1994.
[21]T. Erdogan, “Fiber Grating Spectra, ” J. Lightwave Techno., vol. 15, no. 8, pp. 1277-1294, 1997.
[22]M. J. F. Digonnet, Ed., Rare Earth Doped Fiber Lasers and Amplifiers. New York: marcel Dekker, 1993.
[23]S. Bordais, S. Grot, Y. Jaouën, P. Besnard, and M. L. Flohic, “Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for He3+ optical pumping,” Applied Optics, vol. 43, no. 10, 2004.
[24]J. Hecht, Understanding Fiber Optics, Prentice Hall, 1999.
[25]S.-K Liaw, G.-S. Jhong, “Tunable Fiber Laser Using a Broad-Band Fiber mirror and a Tunable FBG as Laser-Cavity Ends,” IEEE J. Quantum Electron. vol. 44, no. 6, pp. 520-527, 2008.
[26]S. K. Liaw, O. Seung and C. L. Lai, “L band Tunable Fiber Laser based on Mirror Reflector and Tunable Fiber Bragg Gratings,” J. Opt. Soc. Am. B, in processing.
[27]G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser, ” Opt. Lett., vol. 17, pp. 420–422, 1992.
[28]G. A. Ball, C. E. Holton, G. Hull-Allen, and W. W. Morey, “60 mW 1:5 _m single frequency low noise fiber laser mOPA,” IEEE Photon. Technol. Lett., vol. 6, pp. 192–194, 1994.
[29]W.H. Loh, B.N. Samson, L. Dong, G. J. Cowle, K. Hsu, “High Performance Single Frequency Fiber Grating-Based Erbium: Ytterbium-Codoped Fiber Lasers,” J. Lightwave Technol. vol. 16, pp. 114-118, 1998.
[30]G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” J. Lightwave Technol., vol. 10, pp. 1338–1343, 1992.
[31]L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, 1995.
[32]K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol., vol. 15, pp. 1263–1276, 1997.
[33]S. H. Chang, I. K. Hwang, B. Y. Kim, and H. G. Park, “Widely tunable single-frequency Er-doped fiber laser with long linear cavity,” IEEE Photon. Technol. Lett., vol. 13, pp. 287–289, 2001.
[34]S.-K. Liaw, W. Y. Jang, C.-J. Wang, and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, no. 12, 2007 .
[35]S. Yamashita and M. Nishihara, “L-band erbium-doped fiber amplifier incorporating an inline fiber grating laser,” IEEE J. Select. Topics Quantum Electron. , vol. 7, pp. 44–48, 2001.
[36]J. M. Oh, H. B. Choi, D. Lee, S. J. Ahn, and S. B. Lee, “Demonstration of highly efficient flat-gain L-band erbium-doped fiber amplifiers by incorporating a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 14, pp. 1258–1260, Sept. 2002.
[37]A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C.G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol., vol. 15, pp. 1442–1463, 1997.
[38]F. T. S. Yu and S. Yin, Fiber optic sensors. New York, Marcel Dekker, 2002.
[39]P. C. Peng, H. Y. Tseng, and S. Chi, “Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme,” IEEE Photonics Technol. Lett., vol. 16, pp. 575 -577, 2004.
[40]Y. Zhao, C Yu, Y Liao,“ Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement (or displacement) measurement,” Elsevier, Optics and Laser Technol., vol. 36, pp39-42, 2004.
[41]W. Bickford, Mechanics of Solid: Concepts and applications, IRWIN, 1994.
[42]江家慶,“以內埋式光纖光柵感測器監測碳纖維複合材料之疲勞損傷,”國立台灣大學博士論文,2004。
[43]D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, 1974.
[44]R. Kashyap, Fiber Bragg Gratings, Academic Press, 1999.
[45]M. Leblanc, S. Y. Huang, M. Ohn, R. M. Measures, A. Guemes, and A. Othonos “Distributed strain measurement based on a fibre Bragg grating and its reflection spectrum analysis,”

QR CODE