簡易檢索 / 詳目顯示

研究生: 張益華
Yih-hua Chang
論文名稱: 微型永磁同步電動機驅動系統的控制器及轉軸角度估測器的研製
Design and Implementation of a Controller and Rotor Position Estimator for Micro Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-hua Liu
口試委員: 葉勝年
Sheng-nian Yeh
廖聰明
Chang-ming Liaw
徐國鎧
Kuo-kai Shyu
林法正
Faa-jeng Lin
王醴
Li Wang
李永勳
Yuang-shung Lee
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 176
中文關鍵詞: 微型永磁同步電動機,強健控制器,轉軸角度估測器,數位訊號處理器
外文關鍵詞: robust controller
相關次數: 點閱:429下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出微型永磁同步電動機驅動系統的強健控制器設計及其轉軸角度估測器。文中探討以狀態回饋控制法則,應用在微型永磁同步電動機的速度及位置控制上。此外,採用基因演算法來決定強健控制系統的權重函數。本文中使用100光學編碼器,以完成微型永磁同步電動機閉迴路定位系統,且達成快速響應及良好之負載斥拒能力。

其次,本文提出一種轉軸角度估測器,藉由偵測反電勢,可獲得微型電動機的轉軸角度。當電動機操作在低轉速範圍時,定子電流為不連續,可在電流為零處,直接偵測反電勢。當電動機操作在中、高轉速下,定子電流為連續時,可經由計算求出反電勢,以獲得電動機的轉軸角度位置。

文中所研製之系統以數位訊號處理器TMS320F2407為控制核心,分別執行控制法則及轉軸角度估測的運算,實測結果與電腦模擬十分接近,說明本文理論的正確性及可行性。


This dissertation proposes a robust controller design and a position estimator for micro permanent magnet synchronous motor drive systems. In the dissertation, an H∞ state feedback controller is used in the speed control and the position control for a micro permanent magnet synchronous motor. In addition, the genetic algorithms are used to determine the weighting functions of the H∞ controller. An optical encoder with 100 pulses/revolution is used to achieve the rotor position of micro permanent magnet synchronous motor, which has fast response and good load disturbance rejection capability.

Next, a rotor position estimator is proposed. By detecting the back electromagnetic force (EMF), the rotor position of micro motor can be obtained. When the motor is operated in low speed range, the stator current is discontinuous, and then the back emf can be detected directly while the stator current is zero. On the other hand, when the motor is operated in middle to high speed range, the stator current is continuous. The back emf can be computed. Finally, the rotor position can thus be obtained.

The digital signal processor TMS320LF2407 is used as the control center to execute the estimation and control algorithms. Experimental results validate the theoretical analysis to show the correctness and feasibility of this dissertation.

中文摘要 I 英文摘要 II 目錄 III 圖目錄 VII 表目錄 XIII 符號說明 XIV 第一章 緒論 1 1.1動機 1 1.2文獻回顧 3 1.3目的 6 1.4大綱 9 第二章 微型永磁同步電動機 10 2.1簡介 10 2.2結構及特性 11 2.3數學模式 19 2.4驅動原理 24 2.4.1方法一 24 2.4.2方法二 27 第三章 驅動系統介紹 29 3.1簡介 29 3.2功率轉換器 30 3.2.1功率轉換器工作原理 32 3.2.2驅動方法一 34 3.2.3驅動方法二 35 3.3定轉矩控制 37 3.4弱磁控制 41 3.5四象限控制 49 第四章 控制器的設計 50 4.1簡介 50 4.2狀態回饋控制器設計 51 4.2.1控制法則介紹 51 4.2.2速度控制器設計 53 4.2.3位置控制器設計 62 4.2.4權重因子的設計 65 4.2.5以基因演算法尋找權重因子最佳參數的方法 71 4.3控制器性能分析 73 第五章 轉軸角度估測方法及其閉迴路驅動系統 78 5.1簡介 78 5.2轉軸角度估測原理 79 5.2.1反電勢估測法則 80 5.2.2轉軸角度位置與速度估測 86 5.2.3閉迴路控速系統 87 5.3轉軸角度估測器設計 89 5.4估測角度解析度分析 91 5.5靜止狀態啟動方法 93 第六章 系統設計及製作 95 6.1簡介 95 6.2硬體電路製作 96 6.2.1功率轉換器 97 6.2.2回授及偵測電路 99 6.2.3類比/數位轉換電路 101 6.3軟體程式設計 103 6.3.1簡介 103 6.3.2數位訊號處理器架構 104 6.3.3方法一的程式設計 109 6.3.4方法二的程式設計 114 第七章 模擬及實測 118 7.1簡介 118 7.2電腦模擬 119 7.2.1方法一 119 7.2.2方法二 121 7.3模擬及實測結果 126 第八章 結論及建議 161 參考文獻 163 作者簡介 174

[1] P. L. Chapman and P. T. Krein, “Smaller is better? [micromotors and electric drives],” IEEE Trans. Ind. Applicat., vol. 9, no. 1, pp. 62-67, Jan./ Feb. 2003.

[2] L. S. Fan, Y. C. Tai and R. S. Muller, “Integrated movable micromechanical structures for sensors and actuators,” IEEE Trans. Electron. Devices, vol. 35, no. 6, pp. 724-730, June 1988.

[3] M. Mehregany, S. D. Senturia, J. H. Lang and P. Nagarkar, “Micromotor fabrication,” IEEE Trans. Electron. Devices, vol. 39, no. 9, pp. 2060-2069, Sep. 1992.

[4] M. A. Jabbar, “Disk drive spindle motors and their controls,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 276-284, Apr. 1996.

[5] T. G. Wiegele, “Micro-turbo-generator design and fabrication: a preliminary study,” IEEE IECEC-1996, pp. 2308-2313, Aug. 1996.

[6] A. Azzam Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, “Diffraction grating scanners using polysilicon micromotors,” IEEE J. Quantum Electronics, vol. 5, no. 1, pp. 75-82, Jan./Feb. 1999.

[7] R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura, M. Edamatsu, K. Sutoh and H. Fujita, “Hybrid nanotransport system by biomolecular linear motors,” IEEE Trans. MEMS, vol. 13, no. 4, pp. 612-619, Aug. 2004.

[8] D. Polla, A. Erdman, D. Peichel, R. Rizq, Y. Gao, and D. Markus, “Precision micromotor for surgery,” IEEE EMBS-2000, pp. 180-183, Oct. 2000.

[9] X. Wang, S. Cui, and S. Cheng, “Advantages of electrostatic micromotor and its application to medical instruments,” IEEE IAS-2002, pp. 2466-2468, Oct. 2002.

[10] C. T. Liu and T. S. Chiang, “Design and performance evaluation of a microlinear switched-reluctance motor,” IEEE Trans. Magn., vol. 40, no. 2, pp. 806-809, Mar. 2004.

[11] S. F. Nagle, C. Livermore, L. G. Frechette, R. Ghodssi, and J. H. Lang, “An electric induction micromotor,” IEEE J. Microelectromech. Syst., vol. 14, no. 5, pp. 1127-1143, Oct. 2005.

[12] J. Hur, S. H. Rhyu, I. S. Jung, H. G. Sung, and B. I. Kwon, “Three-dimensional characteristic analysis of micro BLDC motor according to slotless winding shape,” IEEE Trans. Magn., vol. 39, no. 5, pp. 2989-2991, Sep. 2003.

[13] H. C. Chau, C. Bi, X. P. Li, and T. S. Low, “Investigation of core loss in PM micro-motor made using MIM technology,” IEEE Trans. Magn., vol. 36, no. 5, pp. 3652-3654, Sep. 2000.

[14] M. Zhang, B. Cai, X. Zhao, and Z. Wang, “Three-dimensional magnetic field analysis of micromotor by fast fourier transform,” IEEE Trans. Magn., vol. 35, no. 5, pp. 3685-3687, Sep. 1999.

[15] A. C. Aguero, F. A. Actis, V. C. Silva, H. R. Cardoso, and S. I. Nabeta, “Finite element analysis of a synchronous permanent magnet micromotor through axisymmetric and transverse planar simulations,” IEEE Trans. Magn., vol. 34, no. 5, pp. 3604-3607, Sep. 1998.

[16] P. A. Gilles, J. Delamare, O. Cugat, and J. L. Schanen, “Design of a permanent magnet planar synchronous micromotor,” IEEE IAS-2000, pp. 223-227, Oct. 2000.

[17] M. Komori and T. Yamane, “Magnetically levitated micro pm motors by two types of active magnetic bearings,” IEEE Trans. Mechatronics, vol. 6, no. 1, pp. 43-49, Mar. 2001.

[18] M. A. Jabbar, “Disk drive spindle motors and their controls,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 276-284, Apr. 1996.

[19] J. Zhang and M. Schroff, “High-performance micromotor control systems,” IEEE IECON-2003, pp. 347-352, Nov. 2003.

[20] T. C. Neugebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors,” IEEE Trans. Circuits and Syst., vol. 51, no. 2, pp. 49-56, Feb. 2004.

[21] V. D. Samper, A. J. Sangster, R. L. Reuben, and U. Wallrabe, “Torque evaluation of a LIGA fabricated electrostatic micromotor,” IEEE J. Microelectromech. Syst., vol. 8, no. 1, pp. 115-123, Mar. 1999.

[22] S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic motor with 1.5 mm diameter,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50, no. 4, pp. 1178-1187, Apr. 1998.

[23] J. Friend, K. Nakamura, and S. Ueha, “A piezoelectric micromotor using in-plane shearing of PZT elements,” IEEE Trans. Mechatronics, vol. 9, no. 3, pp. 467-473, Sep. 2004.

[24] A. B. Frazier, R. O. Warrington and C. Friedrich, “The miniaturization technologies: past, present, and future,” IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 423-430, Oct. 1995.

[25] Wicht Technologie Consulting, “NEXUS Market Analysis for MEMS and Microsystems III 2005-2009,” no. 5, Dec. 2005.

[26] T. J. Miller, “Brushless permanent-magnet motor drives,” IEEE Trans. Power Engineering, vol. 2, no. 1, pp. 55-60, Jan. 1988.

[27] G. Jang and M. G. Kim, “A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque,” IEEE Trans. Magn., vol. 41, no. 2, pp. 750-755, Feb. 2005.

[28] Y. S. Lai, F. S. Shyu, and Y. H. Chang, “Novel loss reduction pulsewidth modulation technique for brushless DC motor drives fed by MOSFET inverter,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1646-1652, Nov. 2004.

[29] L. Parsa and H. A. Toliyat, “Five-phase permanent-magnet motor drives,” IEEE Trans. Ind. Applicat., vol. 41, no. 1, pp. 30-37, Jan./ Feb. 2005.

[30] Z. Y. Pan and F. L. Luo, “Novel soft-switching inverter for brushless DC motor variable speed drive system,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 280-288, Mar. 2004.

[31] J. S. Lawler, J. M. Bailey, J. W. McKeever, amd J. Pinto, “Extending the constant power speed rang of the brushless DC motor through dual-mode inverter control,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 783-793, May 2004.

[32] T. Schneider, T. Koch, and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” IEE Proc.-Electr. Power Applicat., vol. 151, no. 1, pp. 76-82, Jan. 2004.

[33] J. J. Chen and K. P. Chin, “Minimum copper loss flux-weakening control of surface mounted permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 929-936, July 2003.

[34] C. T. Pan and J. H. Liaw, “A robust field-weakening control strategy for surface-mounted permanent-magnet motor drives,” IEEE Trans. Energy Conv., vol. 20, no. 4, pp. 701-709, Dec. 2005.

[35] G. Jiao and C. D. Rahn, “Field weakening for radial force reduction in brushless permanent-magnet DC motors,” IEEE Trans. Magn., vol. 40, no. 5, pp.3286-3292, Sep. 2004.

[36] L. Xu, L. Ye and L. Zhen, “A new design concept of permanent magnet machine for flux weakening operation,” IEEE Trans. Ind. Applicat., vol. 31, no. 2, pp. 373-378, Mar./ Apr. 1995.

[37] G. K. Miti, A. C. Renfrew, and B. J. Chalmers, “Field-weakening regime for brushless DC motors based on instantaneous power theory,” IEE Proc.-Electr. Power Applicat., vol. 148, no. 3, pp. 265-271, May 2001.

[38] F. J. Lin and P. H. Shen, “Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive,” IEEE Trans. Fuzzy Syst., vol. 14, no. 4, pp. 481-495, Aug. 2006.

[39] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 499-507, Apr. 2005.

[40] K. K. Shyu, C. K. Lai, Y. W. Tsai, and D. I. Yang, “A newly robust controller design for the position control of permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol 49, no. 3, pp. 558-565, June 2002.

[41] J. Zhou and Y. Wang, “Adaptive backstepping speed controller design for a permanent magnet synchronous motor,” IEE Proc.-Electr. Power Applicat., vol. 149, no. 2, pp. 165-172, Mar. 2002.

[42] H. Ren and D. Liu, “Nonlinear feedback control of chaos in permanent magnet synchronous motor,” IEEE Trans. Circuits Syst., vol. 53, no. 1, pp. 45-50, Jan. 2006.

[43] Y. A. R. Ibrahim, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Conv., vol. pp, no. 99, pp. 1-8, Mar. 2005.

[44] T. L. Hsien, Y. Y. Sun, and M. C. Tsai, “H∞ control for a sensorless permanent-magnet synchronous drive,” IEE Proc.-Electr. Power Applicat., vol. 144, no. 3, pp. 173-181, May 1997.

[45] J. L. Shi, T. H. Liu, and Y. C. Chang, “Optimal controller design of a sensorless PMSM control system,” IEEE IECON-2005, pp. 532-537, Nov. 2005.

[46] T. H. Kim and M. Ehsani, “Sensorless control of the BLDC motors from near-zero to high speeds,” IEEE Trans. Power Electron., vol. 19, no. 6 , pp. 1635-1645, Nov. 2004.

[47] H. P. Wang and Y. T. Liu, “Integrated design of speed-sensorless and adaptive speed controller for a brushless DC motor,” IEEE Trans. Power Electron., vol. 21, no. 2 , pp. 518-523, Nov. 2006.

[48] C. H. De Angelo, G. R. Bossio, J. A. Solsona, G. O. Garcia, and M. I. Valla, “Sensorless speed control of permanent-magnet motors with nonsinusoidal EMF waveform,” IEE Proc.-Electr. Power Applicat., vol. 152, no. 5, pp. 1119-1126, Sep. 2005.

[49] J. X. Shen and S. Iwasaki, “Sensorless control of ultrahigh-speed PM brushless motor using PLL and third harmonic back EMF,” IEEE Trans. Ind. Electron., vol. 53, no. 2 , pp. 421-428, Apr. 2006.

[50] J. Shao, D. Nolan, M. Teissier, and D. Swanson, “A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps,” IEEE Trans. Ind. Applicat., vol. 39 , no. 6 , pp. 1734-1740, Nov./ Dec. 2003.

[51] Q. Jiang, C. Bi, and R. Huang, “A new phase-delay-free method to detect back EMF zero-crossing points for sensorless control of spindle motors,” IEEE Trans. Magn., vol. 41, no. 7 , pp. 2287-2294, July 2005.

[52] G. J. Su and J. W. McKeever, “Low-cost sensorless control of brushless DC motors with improved speed range,” IEEE Trans. Power Electron., vol. 19 , no. 2 , pp. 296-302, Mar. 2004.

[53] G. H. Jang, J. H. Park, and J. H. Chang, “Position detection and start-up algorithm of a rotor in a sensorless BLDC motor utilising inductance variation,” IEE Proc.-Electr. Power Applicat., vol. 149, no. 2, pp. 137-142, Mar. 2002.

[54] S. Shinnaka, “New sensorless vector control using minimum-order flux state observer in a stationary reference frame for permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol 53, no. 2, pp. 388-398, Apr. 2006.

[55] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol 53, no. 2, pp. 363-372, Apr. 2006.

[56] J. K. Seok, J. K. Lee, and D. C. Lee, “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller,” IEEE Trans. Ind. Electron., vol 53, no. 2, pp. 399-405, Apr. 2006.

[57] T. D. Batzel and K. Y. Lee, “Electric propulsion with sensorless permanent magnet synchronous motor: implementation and performance,” IEEE Trans. Energy Conv., vol 20, no. 3, pp. 575-583, Sep. 2005.

[58] H. A. Toliyat, L. Hao, D. S. Shet, and T. A. Nondahl, “Position-sensorless control of surface-mount permanent-magnet AC (PMAC) motors at low speeds,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 157-164, Feb. 2002.

[59] C. Silva, G. M. Asher, and M. Sumner, “Hybrid rotor position observer for wide speed-range sensorless PM motor drives including zero speed,” IEEE Trans. Ind. Electron., vol 53, no. 2, pp. 373-378, Apr. 2006.

[60] S. Bolognani, L. Tubiana, and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Trans. Ind. Applicat., vol 39, no. 6, pp. 1741-1747, Nov./ Dec. 2003.

[61] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, Apr. 1996.

[62] Maxon motor ag, Maxon 2004/ 05, Apr. 2004.

[63] B. K. Bose, “Technology trends in microcomputer control of electrical machines,” IEEE Trans. Ind. Electron., vol. 35, no. 1, pp. 160-177, Feb. 1988.

[64] T. Sebastian, G. Slemon, and M. Rahman, “Modelling of permanent magent synchronous motors,” IEEE Trans. Magn., vol. 22, no. 5, pp. 1069-1071, Sep. 1986.

[65] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.

[66] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273. Mar./Apr. 1989.

[67] N. Bennett, J. Wang, D.W. Shimmin, and K. J. Binns, “A new vector control scheme for an adjustable speed AC drive system utilising a high field permanent magnet synchronous machine,” IEEE IEMDC-1993, pp. 121-126, Sep. 1993.

[68] W. Leonhard, “Field-orientation for controlling AC machines-principle and application,” in Conf. Rec. Power Electronics and Variable-Speed Drives., pp. 277-282, July 1988.

[69] W. L. Soong and T. J. Miller, “Field-weakening performance of brushless synchronous AC motor drives,” IEE Proc.-Electr. Power Applicat., vol. 141, no. 6, pp. 331-340, Nov. 1994.

[70] R. C. Becerra and M. Ehsani, “High-speed torque control of brushless permanent magnet motors,” IEEE Trans. Ind. Electron., vol. 35, no. 3, pp. 402-406, Aug. 1988.

[71] P. P. Khargonekar, I. R. Petersen, and M. A. Rotea, “H∞-optimal control with state-feedback,” IEEE Trans. Automat. Contr., vol. 33, no. 8, pp. 786-788, Aug. 1988.

[72] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space solutions to standard and control problems,” IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831-847, Aug. 1989.

[73] J. A. Ball, P. Kachroo, and A. J. Krener, “H∞ tracking control for a class of nonlinear systems,” IEEE Trans. Automat. Contr., vol. 44, no.6, pp. 1202-1206, June 1999.

[74] A. P. Sage and C. C. White, Optimal Systems Control. Englewood Cliffs, NJ: Prentice-Hall, 1977.

[75] T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax Design Problems : A Dynamic Game Approach. Boston: Birkhauser, 1995.

[76] I. Rhee and J. L. Speyer, “A game theoretic approach to a finite-time disturbance attenuation problem,” IEEE Trans. Automat. Contr., vol. 36, no. 9, pp. 1021-1032, Sep. 1991.

[77] T. Iwasaki and R. F. Skelton, “All controllers for the general H∞ control problem:LMI existence conditions and state space formulas,” Automatica, vol. 30, no. 8, pp. 1307-1217, 1994.

[78] J. C. Doyle and K. Zhou, Essentials of Robust Control. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[79] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[80] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback Control Theory, Macmillan Publishing Company ,1992.

[81] J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. on Systems, Man and Cybernetics, vol. 16, no. 1, pp. 122-128, 1986.

[82] H. B. Kamepalli, “The optimal basics for GAs”, IEEE Trans. Potentials, vol. 20, no. 2, pp. 25-27, Apr./ May 2001.

[83] Spectrum Digital, eZdspTM LF2407A Technical Reference, 2003.

[84] Texas Instruments, TMS320LF/LC240x DSP Controllers System and Peripherals Reference Guide, 2000.

[85] Spectrum Digital, TMS320C2xx/C24x Code Composer User’s Guide, 2000.

QR CODE