簡易檢索 / 詳目顯示

研究生: 余建杰
JIAN-JIE YU
論文名稱: 平板受雙小圓柱尾流衝擊時之流場特徵與氣動力性能
Effect of dual small-diameter circular cylinder wakes on flow characteristics and aerodynamic performance
指導教授: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
口試委員: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 335
中文關鍵詞: 圓柱尾流雙小圓柱平板蕈狀渦漩分離尾流合併尾流
外文關鍵詞: mushroom, vortex, vortices, separated, wakes, merging
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討平板在橫風中受雙小圓柱尾流衝擊,在不同的雷諾數及不同的小圓柱軸心線距時的流動現象以及平板的受力行為。在風洞中設置平板以及雙小圓柱,使用雷射光頁輔助煙霧可視化法拍攝流場的連續演化;利用熱線風速儀量測流場中渦流的週期特性;使用質點影像速度儀(Particle Image Velocimetry)量測流場速度分佈,繪製成速度向量流線圖以及渦度分佈圖,並計算紊流強度。於平板之迎風面及背風面設置多個細小壓力孔,量測平板迎風面及背風面的壓力,將量測到的壓力數值轉換為壓力係數,再將壓力係數積分獲得平板的阻力係數。研究結果顯示,各模態的流場、渦度、空氣動力特徵隨著兩圓柱軸心線距及雷諾數改變,而在不同區域內呈現不同現象。平板上游會呈現單顆蕈狀渦漩或雙顆蕈狀渦漩結構,各蕈狀渦漩結構之特徵直徑大小不同,兩股尾流在平板上游前的特徵也會受到上述兩個因素影響,造成平板上游蕈狀渦漩結構變化,進而影響平板氣動力特性。在不同的雷諾數與兩小圓柱軸心線距區域,平板上游的流場特徵可劃分為兩大主要的特徵模態,分別為;Single mushroom vortex及Dual mushroom vortices模態。主模態又可區分為八個子模態;Separated wakes steady vortices、Separated wakes unsteady vortices、Separated wakes periodic merging vortices、Separated wakes nonperiodic vortices、Separated wakes steady vortex、Merged wake steady vortex、Separated wakes periodic vortex、Merged wake nonperiodic vortex模態。當兩圓柱尾流撞擊平板時與未放小圓柱時的阻力係數相比,大約可使阻力係數降至10%左右。


The study investigated the flow phenomena and aerodynamic behaviors of a flat plate subjected to the impingement of dual-cylinder wakes created downstream of two small circular cylinders. The primary physical and geometric parameters influencing the flow properties were Reynolds number and non-dimensional distance between cylinder axises, respectively. The laser light sheet-assisted smoke visualization technique was used to capture the time-evolution images of the flow field. The frequencies of the periodic vortex evolution processes were measured by a one-component hot-wire anemometer. The velocity fields were measured by particle image velocimetry (PIV). Velocity vectors, streamlines, vorticity, and turbulence intensities were analyzed based on the measured velocity data. The surface pressures on both sides of the flat plate were fetched from the pressure taps drilled on both sides of the flat plate. The measured pressures were converted into pressure coefficients. The drag coefficients were subsequently obtained by integrating the pressure coefficients over both surface areas of the flat plate. The results showed that the flow patterns, vorticity distributions, and aerodynamic performances were significantly subject to the influences of the Reynolds number and the non-dimensional distance between cylinder axises. Multiple complex characteristic flow modes were observed in the domain of the Reynolds number and the non-dimensional distance between cylinder axises. The primary characteristic flow modes were single and dual mushroom vorteices. Several secondary characteristic flow modes were identified within regime of the primary characteristic flow modes. When compared with the natural flat plate, the dual-cylinder wakes impingement on the flat plate induced decrease in drag coefficient by approximately 10% in some characteristic flow modes.

目錄 摘要 II ABSTRACT IV 誌謝 V 目錄 VI 符號索引 IX 圖表索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 流動控制 2 1.2.2 流體流經圓柱的流場特性 4 1.2.3 流體流經平板的流場特性 5 1.2.4小圓柱尾流區流場可視化 6 1.3 研究目標 11 第二章 實驗設備、儀器與方法 12 2.1研究構思 12 2.2 實驗設備 13 2.2.1 風洞 13 2.2.2 平板模型 14 2.2.3 尾流產生器 14 2.3 實驗儀器與方法 15 2.3.1 自由流的偵測 15 2.3.2 煙霧流場可視化 15 2.3.3 熱線風速儀尾流速度量測 18 2.3.4 質點影像速度儀 19 2.3.5 平板表面壓力量測 23 第三章 小圓柱尾流流場特徵 25 3.1平板上游垂直面流場特徵 25 3.2 流場特徵模態分區 64 3.3 平板上游水平面流場特徵 67 第四章 平板上游流場量化分析 73 4.1 特徵模態之速度向量流線圖 73 4.1.1 垂直面 73 4.2 等渦度分佈 86 4.2.1 垂直面 86 4.3速度分佈與紊流強度 94 4.3.1 垂直面 95 第五章 平板的氣動力性能 114 5.1 平板表面壓力係數分佈 114 5.2 阻力係數 119 第六章 結論與建議 123 6.1 結論 123 6.2 建議 126 參考文獻 127

[1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold Great Britain, 1999.
[2] Prandtl, L., “Über Flüssigketsbewegung bei sehr kleiner Reibung,” Proc. Third Int. Math. Congr., Heidelberg, Germany, 1904, pp. 484-491.
[3] In, K., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate, “ Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[4] Dennis, S. C. R., Qiang, H., Countanceau, M., and Launay, J. L., “Viscous flow normal to a flat plate at moderate Reynolds numbers, ” Journal of Fluid Mechanics, Vol. 248, Mar. 1993, pp. 605-635.
[5] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and structures, Vol. 10, No. 2, 1996, pp. 159-171.
[6] Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Enguneering and Industrial Aerodynamics, Vol. 89, No. 14-15, 2001, pp. 1267-1289.
[7] Bearman, P. W. and Harvey, J. K., “Control of circular cylinder flow by the use of dimples,” AlAA Journal, Vol. 31, No. 10,1993, pp.1753-1756.
[8] Fiedler, H. E., “Control of free turbulent shear flows, ” Flow Control Fundamentals and Practices, edited by M. Gad-el-Hak, A. Pollard, and J. P. Bonnet, Springer-Verlag, Berlin, 1998, p.335-429.
[9] Gad-el-Hak, M., Flow Control - Passive, Active, and Reactive Flow Management, Cambridge University Press, New York, 2000.
[10] Ghee, I. A, and Leishman, J. G., “Unsteady circulation control aerodynamics of a circular cylinder with periodic jet blowing, ” AlAA Journal, Vol. 30, No. 2, 1992, pp. 289-299.
[11] Strykowski, P. J. and Sreenivasan, K. R., “On the formation and suppression of vortex shedding at low Reynolds numbers, ” Journal of Fluid Mechanics, Vol. 218, Sep. 1990, pp. 71-107.
[12] Wang, A. -B. and Chang, Y. -C., “Experimental investigation of suppression of vortex shedding from a circular cylinder, ” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, 1996, pp. 249- 254.
[13] Sakamoto, H., Tan, K., and Haniu, H, “An optimum suppression of fluid forces by controlling a shear layer separated from a square Prism; ” Journal of Fluids Engineering, Vol. 113, No. 2, 1991, pp. 183-189.
[14] Sakamoto, H. and Haniu, H., “Optimum suppression of fluid forces acting on a circular cylinder, ” Journal of Fluids Engineering, Vol. 116, No. 2, 1994, pp. 221-227.
[15] Prasad, A. and Williamson, C. H. K., “A method for the reduction of bluff body drag, ” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, Jul-Oct 1997, pp. 155-167.
[16] Tsutsui, I. and Igarashi, I., “Drag reduction of a circular cylinder in an air- stream, ” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 527-541.
[17] Bouak, F. and Lemay, J., “Passive control of the aerodynamic forces acting on a circular cylinder, ” Experimental Thermal and Fluid Science, Vol. 16, No. 1-2, 1998, pp. 112-121.
[18] Lienhard, J. H., Synopsis of lift, drag and vortex frequency data for rigid circular cylinders, Research Division Bulletion 300, Washington State University, 1966.
[19] Huang, R. F., Chen, J. M., and Hsu C. M., "Modulation of surface flow and vortex shedding of a circular cylinder in the suberitical regime by self-excited vibration rod," Journal of Fluid Mechanics, Vol. 555, May 2006, pp. 321-352.
[20] Zdravkovich, M. M., “Different modes of vortex shedding: an overview, ” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[21] Roshko, A, “On the wake and drag of bluff bodies, ” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 124-132.
[22] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers, ” Journal of Fluid Mechanics, Vol. 6, No. 4, 1959, pp. 547- 567.
[23] Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (aeolian tones) ” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
[24] Weaver, W., “Wind-induced vibrations in antenna members, ” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. 1, 1961, pp. 141-165.
[25] Gerard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices, ” Journal of Fluid Mechanics, Vol. 11, No. 2, 1961, pp. 244-256.
[26] Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913, 1954.
[27] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate, ” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[28] Dennis, S. C. R., Qiang, W., Coutanceau, M. and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers, ” Journal of Fluid Mechaics, Vol. 248, Mar 1993, pp. 605-635.
[29] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number, ” Journal of Fluids and Structures, Vol. 10, No. 2,1996, pp. 159-171.
[30] Sichlichting, H. Boundary layer theory, 7th ed, Mcgraw-Hill, New York, 1993, p. 699.
[31] Flagan, R. C. and Seinfeld J. H., Fundamentals of air pollution engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, p.295-307.
[32] Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream, ” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
[33] Lee, B. E., “The effect of turbulence on the surface pressure field of a square prism, ” Journal of Fluid Mechanics, Vol. 69, No. 2, 1975, pp. 263-282.
[34] Sarioglu, M., Akansu, Y. E. and Yavuz, T., “Control of flow around square cylinders at incidence by using rod, ” AlAA Journal, Vol. 43, No. 7, July 2005, pp. 1419-1426.
[35] Igarashi, I., Nobuaki, I., “Drag reduction of flat plate normal to airstream by flow control using a rod, ” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, No. 4-5, 2002, pp. 359-376.
[36] 張冠翔, 小圓柱尾流衝擊平板時的流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2017.
[37] 張庭瑋, 平板受小圓柱尾流衝擊時之流場特徵與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2018.
[38] 張育興, 小圓柱尾流衝擊平板時的流場特徵, 國立台灣科技大學機械工程研究所碩士論文, 2019.
[39] 彭韋翔, 小圓柱尾流衝擊平板時漩度對流場與氣動力性能的影響, 國立台灣科技大學機械工程研究所碩士論文, 2020.
[40] 劉育甫, 傾斜平板受圓柱尾流衝擊時之流場與氣動力性能, 國立台灣科技大學機械工程研究所碩士論文, 2021.
[41] Z. J. Wang and Y. Zhou., “Flow-visualization of a two side-by-side cylinder wake, ” Journal of Flow Visualization & Image Processing, Vol. 9, pp. 123-138, 2002.
[42] P W. Bearman and A. Wadcock., “The Interference Between a Pair of Circular Cylinders Normal to a Stream, ” Journal of Fluid Mechanics, Vol. 61, pp. 499-511, 1973.
[43] D. Sumner, S. S. T. Wong, S. J. Price, and M. P. Paidoussis, Fluid Behaviour of Side-by-Side Circular Cylinders in Steady Cross-Flow, Journal of Fluids Structures, vol. 13, pp. 309-338, 1999.
[44] H. J. Kim and P. A. Durbin, Investigation of the Flow between a Pair of Circular Cylinders in the Flopping Regime, Journal of Fluid Mechanics, vol. 196, pp. 431-448, 1988.
[45] H. M. Spivac, Vortex Frequency and Flow Pattern in the Wake of Two Parallel Cylinders at Varied Spacings Normal to an Air Stream, Journal of Aeronautical Sciences, vol. 13, pp. 289-297, 1946.
[46] S. Ishigai, E. Nishikawa, K. Nishmura, and K. Cho, Experimental Study on Structure of Gas Flow in Tube Banks with Tube Axes Normal to Flow - Part 1, Karman Vortex Flow around Two Tubes at Various Spacings, Bulletin of the JSME, vol. 15, pp. 949-956, 1972.
[47] P. W. Bearman and A. J. Wadcock, The Interference between a Pair of Circular Cylinders Normal to a Stream, Journal of Fluid Mechanics, vol. 61, pp.499-511, 1973.
[48] M. M. Zdravkovich, Flow-Induced Oscillations of Two Interfering Circular Cylinders, Journal of Sound and Vibrations, vol. 101, pp. 511-521, 1985.
[49] D. S. Weaver and A. Abd-Rabbo, A Flow Visualization Study of a Square Array of Tubes in Water Cross-Flow, Proceedings Symposium on Flow-In-duced Vibrations, vol. 2 (Editors: M. P. Paidoussis, M. K. Au-Yang, and S. S.Chen), pp. 165-177, 1984.
[50] S. Granger, R. Campistron, and J. Lebret, Motion-Dependent Excitation Mechanisms in a Square In-line Tube Bundle Subject to Water Cross-flow: An Experimental Modal Analysis, Journal of Fluids and Structures, vol. 7, pp.521-550, 1993.
[51] K. Kamemoto, Formation and Interaction of Two Parallel Vortex Streets, Bulletin of the JSME, vol. 19, pp. 283-290, 1976.
[52] M. Kiya, M. Arie, H. Tamura, and H. Mori, Vortex Shedding from Two Circular Cylinders in Staggered Arrangement, Journal of Fluids Engineering, vol.102, pp. 166-173, 1980.
[53] C. H. K. Williamson, Evolution of a Single Wake behind a pair of Bluff Bod-ies, Journal of Fluid Mechanics, vol. 159, pp. 1-8, 1985.

QR CODE