簡易檢索 / 詳目顯示

研究生: 朱修平
Hsiu-Ping Chu
論文名稱: 自動車倉儲系統之等候網路分析
Queuing Network Analysis of Autonomous Vehicle Storage and Retrieval Systems
指導教授: 郭伯勳
Po-Hsun Kuo
口試委員: 曹譽鐘
Yu-Chung Tsao
喻奉天
Vincent F. Yu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 77
中文關鍵詞: 單元貨載倉儲系統自動化導向搬運車等候網路系統評估系統模擬
外文關鍵詞: unit-load warehousing system, AGV, queuing network, performance evaluation, simulation
相關次數: 點閱:274下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

單元貨載自動化搬運車倉儲系統 (AVS/RS) 透過自動化導向搬運車搬運、上載及卸載貨物以完成顧客訂單;能夠輕易的改變系統規模及產出量是此倉儲系統的優勢,像是增加貨梯數量以因應大量的顧客需求;論文中的等候網路模型透過封閉式等候網路估算自動化搬運車等待升降貨梯的平均等候時間,並透過開放式等候網路估算訂單在系統中等待自動化導向搬運車的平均等候時間,除此之外,等候網路模型也能提供系統中升降貨梯及自動化搬運車的利用率,以及訂單在系統中所花費的平均時間。
為了檢視理論模型所產出的數據是否合理,我們透過系統模擬進行驗證,並同時分析系統中不同參數對系統表現造成的影響;依據不同的訂單到達率、系統規格、自動化搬運車輛及升降貨梯的數量,此等候網路模型都能提供有效的評估。


Unit-load autonomous vehicle storage and retrieval systems utilize AGV’s for loading and unloading pallets (or boxes) of customer orders. The advantage of this system is flexible to change the system configuration, and the number of lifts and AGV’s to meet different throughputs. This research develops closed and open queuing network models to estimate an average vehicle’s waiting time for a lift vertical movement and an average transaction’s waiting time for a vehicle service. At the same time, the utilization rates of lifts and AGV’s and average transaction cycle time will be assessed. Simulation studies are also provided to validate the analytical models and investigate the system performance based on different system design factors. The proposed queuing network models can be used to estimate the performance of AGV’s and lifts in accordance with the transaction arrival rates, layout configuration, number of AGV’s and Lifts.

Content CHAPTER 1 INTRODUCTION 1 1.1 AVS/R Systems 1 1.2 Research Objectives 2 1.3 Methodology 3 1.4 The Framework 4 CHAPTER 2 LITERATURE REVIEW 6 2.1 Review of Warehouses 6 2.2 Order Picking in Conventional Warehouses 7 2.2.1 Layout Design 8 2.2.2 Storage Assignment Policies 9 2.2.3 Routing Policies 9 2.3 More Warehouse Systems 11 2.3.1 Picker to Buffer (P2B) System 11 2.3.2 AS/R System 12 2.4 AVS/R Systems 13 2.5 Queuing Network 15 CHAPTER 3 QUEUING NETWORK MODELS FOR AVS/RS’S 17 3.1 Assumptions and Notation 18 3.2 Storage and Retrieval Scenarios 19 3.2.1 6 Storage Scenarios 19 3.2.2 The 6 Retrieval Scenarios 25 3.3 Rate Diagrams and Closed Queue 30 3.4 Service Time of Nodes in the Closed Network 36 3.5 Performance Measures in the Closed Network 45 3.6 Open Network 52 CHAPTER 4 SYSTEM ANALYSIS & SIMULATION 58 4.1 Design of Experiment 58 4.2 Validation 59 4.2.1 Validation of Closed Network 59 4.2.2 Validation of Open Network 63 4.3 Experiment of Factors 65 4.3.1 Analysis of T, A, C 65 4.3.2 Analysis of V & L 68 4.3.3 Analysis of Three Different System Shapes 70 CHAPTER 5 CONCLUSIONS 73 REFERENCE 75

REFERENCE

Azzi, A., Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2011). Innovative travel time model for dual-shuttle automated storage/retrieval systems. Computers and Industrial Engineering, 61(3), 600-607. doi: 10.1016/j.cie.2011.04.015
Allen, A. O. (1990). Probability, Statistics, and Queuing Theory (2 ed.). New York: Academic Press.
Baker, P., & Canessa, M. (2009). Warehouse design: A structured approach. European Journal of Operational Research, 193(2), 425-436. doi: 10.1016/j.ejor.2007.11.045
Berglund, P., & Batta, R. (2012). Optimal placement of warehouse cross-aisles in a picker-to-part warehouse with class-based storage. IIE Transactions (Institute of Industrial Engineers), 44(2), 107-120. doi: 10.1080/0740817X.2011.578608
Bolch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation With Computer Science Applications (2 ed.): John Wiley & Sons.
Chan, F. T. S., & Chan, H. K. (2011). Improving the productivity of order picking of a manual-pick and multi-level rack distribution warehouse through the implementation of class-based storage. Expert Systems with Applications, 38(3), 2686-2700. doi: 10.1016/j.eswa.2010.08.058
Curry, G. L., & Feldman, R. M. (2011). Manufacturing systems modeling and analysis (2 ed.): Springer Berlin Heidelberg.
de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501. doi: 10.1016/j.ejor.2006.07.009
Ekren, B. Y., & Heragu, S. S. (2010). Approximate analysis of load-dependent generally distributed queuing networks with low service time variability. European Journal of Operational Research, 205(2), 381-389. doi: 10.1016/j.ejor.2010.01.022
Ekren, B. Y., Heragu, S. S., Krishnamurthy, A., & Malmborg, C. J. (2014). Matrix-geometric solution for semi-open queuing network model of autonomous vehicle storage and retrieval system. Computers and Industrial Engineering, 68(1), 78-86. doi: 10.1016/j.cie.2013.12.002
Fukunari, M., & Malmborg, C. J. (2009). A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems. European Journal of Operational Research, 193(1), 152-167. doi: 10.1016/j.ejor.2007.10.049
Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007). Research on warehouse operation: A comprehensive review. European Journal of Operational Research, 177(1), 1-21. doi: 10.1016/j.ejor.2006.02.025
Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010). Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3), 539-549. doi: 10.1016/j.ejor.2009.07.031
Gue, K. R., & Meller, R. D. (2014). A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points. European Journal of Operational Research, 236(1), 382-394. doi: 10.1016/j.ejor.2013.12.023
Khachatryan, M., & McGinnis, L. F. (2014). Picker travel time model for an order picking system with buffers. IIE Transactions (Institute of Industrial Engineers), 46(9), 894-904. doi: 10.1080/0740817X.2013.823001
Klok, C., Roodbergen, M., & Hemerik, L. (2009). Diagnosing declining grassland wader populations using simple matrix models. Animal Biology, 59(1), 127-144. doi: 10.1163/157075609X417143
Kuo, P. H., Krishnamurthy, A., & Malmborg, C. J. (2007). Design models for unit load storage and retrieval systems using autonomous vehicle technology and resource conserving storage and dwell point policies. Applied Mathematical Modelling, 31(10), 2332-2346. doi: 10.1016/j.apm.2006.09.011
Lagershausen, S. (2013). Performance Analysis of Closed Queueing Networks: Springer-Verlag Berlin Heidelberg.
Pan, J. C. H., Shih, P. H., Wu, M. H., & Lin, J. H. (2015). A storage assignment heuristic method based on genetic algorithm for a pick-and-pass warehousing system. Computers and Industrial Engineering, 81, 1-13. doi: 10.1016/j.cie.2014.12.010
Pan, J. C. H., Wu, M. H., & Chang, W. L. (2014). A travel time estimation model for a high-level picker-to-part system with class-based storage policies. European Journal of Operational Research, 237(3), 1054-1066. doi: 10.1016/j.ejor.2014.02.037
Roodbergen, K. J., & De Koster, R. (2001). Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), 32-43. doi: 10.1016/S0377-2217(00)00177-6
Roodbergen, K. J., & Vis, I. F. A. (2009). A survey of literature on automated storage and retrieval systems. European Journal of Operational Research, 194(2), 343-362. doi: 10.1016/j.ejor.2008.01.038
Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtum, G. J., Mantel, R. J., & Zijm, W. H. M. (2000). Warehouse design and control: Framework and literature review. European Journal of Operational Research, 122(3), 515-533. doi: 10.1016/S0377-2217(99)00020-X
Roy, D., Krishnamurthy, A., Heragu, S., & Malmborg, C. (2015). Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems. European Journal of Operational Research, 242(1), 72-87. doi: 10.1016/j.ejor.2014.09.040
Roy, D., Krishnamurthy, A., Heragu, S. S., & Malmborg, C. J. (2014). Blocking effects in warehouse systems with autonomous vehicles. IEEE Transactions on Automation Science and Engineering, 11(2), 439-451. doi: 10.1109/TASE.2013.2243910
Sarker, B. R., & Babu, P. S. (1995). Travel time models in automated storage/retrieval systems: A critical review. International Journal of Production Economics, 40(2-3), 173-184. doi: 10.1016/0925-5273(95)00075-2
Sarker, B. R., Mann, L., & Le Al Dos Santos, J. R. G. (1994). Evaluation of a class-based storage scheduling technique applied to dual-shuttle automated storage and retrieval systems. Production Planning and Control, 5(5), 442-449. doi: 10.1080/09537289408919516
Sarker, B. R., Sabapathy, A., Lal, A. M., & Han, M. H. (1991). Performance evaluation of a double shuttle automated storage and retrieval system. Production Planning and Control, 2(3), 207-213. doi: 10.1080/09537289108919348
Shqair, M., Altarazi, S., & Al-Shihabi, S. (2014). A statistical study employing agent-based modeling to estimate the effects of different warehouse parameters on the distance traveled in warehouses. Simulation Modelling Practice and Theory, 49, 122-135. doi: 10.1016/j.simpat.2014.08.002
Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763. doi: 10.1016/j.ejor.2009.01.036
Tijms, H. (1986). Stochastic Modelling and Analysis: A Computational Approach (1 ed.): Wiley.
Yu, Y., & de Koster, R. (2009). Optimal zone boundaries for two-class-based compact three-dimensional automated storage and retrieval systems. IIE Transactions (Institute of Industrial Engineers), 41(3), 194-208. doi: 10.1080/07408170802375778

QR CODE