簡易檢索 / 詳目顯示

研究生: 黃中溢
Chung-Yi Huang
論文名稱: 不鏽鋼薄板之超音波微引伸成形分析
A Study on Micro Deep Drawing With Ultrasonic Vibrations of Thin Stainless Sheet
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
徐瑞坤
Ray-Quan Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 82
中文關鍵詞: 微引伸極限引伸比不鏽鋼超音波加工
外文關鍵詞: Micro Deepdrawing, Limit Deepdrawing Ration, Stainless Steel, Ultrasonic Machining
相關次數: 點閱:179下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬微成形技術已越來越廣泛被利用於工業微產品之製作,而其所使用之材料厚度隨著產品微小化而越小。本文利用Abaqus 有限元素分析軟體建構一套分析流程,分析SS304不鏽鋼薄板在圓杯狀模穴內進行微引伸之應力及變形行為,並且與實驗進行比較。實驗使用之材料厚度為0.1㎜、0.075㎜及0.05㎜,並藉由不同外徑之料片求得不鏽鋼薄板在微引伸製程之引伸極限比,最後並提出超音波振動輔助加工之概念,將超音波振動施加於微引伸製程中,以改善SS304不鏽鋼薄板之成形性。實驗與模擬所得之數據,可為金屬薄板材之開發與精密成形加工之參考。


Micro metal forming technology has been widely used in various industries. The thickness of sheet is reduced due to the trends of miniaturization of products. To clarify the plastic behavior of very thin sheet, micro deep drawing experiments with 304 stainless steel sheets of 0.05, 0.075 and 1mm thickness was conducted. In addition, finite element analysis was also carried out to predict the plastic flow and the formability. The stress-strain distribution of micro cups under deep drawing process was analyze and discussed. Moreover, the LDR (ratio of blank diameter to punch diameter) was detected. The results of experimental and numerical showed a good agreement. Moreover, ultrasonic variations was imposed to the micro deep drawing process to increase formability of stainless steel 304 foils. This investigation provides a reference for manufacturing on metal thin sheet with high precise.

摘要 I 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1尺寸效應 2 1.2.2 尺寸效應對塑流應力的影響 4 1.2.3 相似理論 6 1.2.4摩擦對微成形之影響 8 1.2.5微引伸製程 9 1.2.6金屬成形分析 11 1.2.7超音波振動輔助成形 12 1.3研究動機 16 1.4論文架構 16 第二章 基本理論 17 2.1有限元素法與Abaqus商用套裝軟體 17 2.1.1簡介 17 2.1.2基本假設 17 2.1.3 平衡方程式與虛功原理 18 2.1.4基本有限元素方程 20 2.1.5彈塑性有限元素增量分析 21 2.2減積分殼元素 23 2.2.1殼體厚度與截面點 24 2.3 Abaqus金屬成形解析法 26 2.4引伸加工 27 2.4.1引伸模具 27 2.4.2引伸比與引伸率 27 2.4.3圓筒引伸加工之應力與板厚變化 28 2.5超音波共振理論 29 第三章 實驗方法 33 3.1材料選用 33 3.2拉伸試驗 34 3.2.1拉伸試驗之設備 34 3.2.2拉伸試驗之試片製作 35 3.2.3拉伸實驗步驟 36 3.2.4拉伸實驗之結果 37 3.3微引伸實驗 40 3.3.1下料設備 40 3.3.2模具介紹 43 3.3.4實驗步驟 45 3.4超音波設備 45 第四章 模擬分析與實驗結果 49 4.1 Abaqus模擬分析流程 49 4.1.2分析步驟 51 4.2模擬結果與實驗之比較 54 4.2.1沖程-負荷之比較 54 4.2.2工件應力分佈 58 4.2.3工件厚度變化之比較 62 4.3成形極限分析 65 4.4超音波振動對微引伸製程之影響 70 4.4.1超音波振動對成形性之影響 70 4.4.2超音波振動對極限引伸比之影響 72 第五章 結論 76 5.1結論 76 5.2未來展望 78 參考文獻 79

1. M. Gerier, F. Vollertsen, R. Kals, “Fundamentals on Manufacturing of Sheet Metal Microparts,” Annals of the CIRP, Vol.45, pp.277-282 (1996).
2. M. Gerier, M. Kleiner, R. Eckstein, N. Tiesler and U. Engel, “Microforming,” CIRP Annals-Manufacturing Technology, Vol.50, pp.445-462 (2001).
3. F. Vollertsen, “Size effects in Manufacturing,” Process Scaling vol.24, pp.1-9 (2003).
4. A. Messner, U. Engel, R. Kals and F. Vollertsen, “Size Effect in The FE-Simulation of Micro-Forming Processes,” Journal of Materials Processing Technology, Vol.45, pp.371-376 (1994).
5. M. Geiger, R. Eckstenin, “Microforming-Advancd Technology of Plasticity.” Proceedings of the 7th ICTP, pp.327-338 (2002).
6. J. F. Michel and P. Picart, “Size Effects on The Constitutive Behavior for Brass in Sheet Metal Forming,” Journal of Materials Processing Technology, Vol.141, pp.439-446 (2003).
7. L. V. Raulea, A. M. Goijaerts, L. E. Govaert and F. P. T. Baaijens, “Size Effects in The Processing of Thin Metal Sheets,” Journal of Materials Processing Technology, Vol.115, pp.44-48 (2001).
8. T. A. Kals, R. Eckstein, “Miniaturization in Sheet Metal Working,” Journal of Materials Processing Technology, Vol.103, pp.95-101 (2000).
9. Y. Saotome, K. Yasuda and H. Kaga, “Microdeep Drawability of Very Thin Sheet Steels,” Journal of Materials Processing Technology, Vol. 113, pp.641-647 (2001).
10. N. Tiesler, U. Engel, “Microforming-Effects of Miniaturization,” Proceedings of The 8th International Conference on Metal Forming, pp.355-360 (2000).
11. Y. Maruo, H. Saiki, L. Ruan, “Effect of Sheet Thickness on Deep Drawing of Metal Foils,” Journal of Achievements in Materials and Manufacturing Engineering, Vol.20, Issue1-2, pp.479-482 (2007).
12. C. J. Wang, B. Guo, D. B. Shan, “Effect of Die Cavity Dimension on Micro U Deep Drawing Behavior with T2 Foil,” Transactions of Nonferrous Metals Society of China, Vol.19, pp.790-794 (2009).
13. F. Vollertsen, and Z. Hu, “Analysis of Punch Velocity Dependent Process Window in Micro Deep Drawing,” Production Engineering, Vol.4, Issue6, pp.553-559 (2010).
14. C. H. Chen, J. T. Gau, R. S. Lee, “An Experimental and Analytical Study on The Limit Drawing Ratio of Stainless Steel 304 Foils for Microsheet Forming,” Materials and Manufacturing Processes, Vol.24, Issue12, pp.1256-1265 (2009).
15. C. H. Chen, R. S. Lee, J. T. Gau, “Size Effect and Forming-Limit Strain Prediction for Microscale Sheet Metal Forming of Stainless Steel 304,” Journal of Strain Analysis for Engineering Design, Vol.45, Issue4, pp.283-299 (2010).
16. K. Manabe, T. Shimizu, H. Koyama, M. Yang, K. Ito, “Validation of FE simulation Based on Surface Roughness Model in Micro Deep Drawing,” Journal of Materials Processing Technology, Vol.204, Issue1-3, pp.89-93 (2008).
17. T. W. Ku, S. M. Hwang, B. S. Kang, “Mill-Component Forming of Rectangular Cup Drawing,” Journal of Materials Processing Technology, Vol.113, Issue1-3, pp.749-753 (2001).
18. H. B. Shim, “Improving Formability to Develop Miniature Stamping Technologies,” International Journal of Precision Engineering and Manufacturing, Vol.10, Issue2, pp.117-125 (2009).
19. Y. Yamada, N. Yoshimura, and T. Sakurai, “Plastic Stress Strain Matrix and its Application for The Solution of Elastic-Plastic Problems by Finite Element Method,” International Journal of Mechanical Sciences, Vol.10, pp.343-354 (1968).
20. H. D. Hibbit, P. V. Marcal, and J. R. Rice, “A Finite Element Formulation for Problem of Large Strain and Displacement,” International Journal of Solid and Structures, Vol.6, pp.1069-1086 (1970).
21. R. M. McMeeking, and J. R. Rice, “Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation,” International Journal of Solid and Structures, Vol.11, pp.601-616 (1975).
22. 愛發股份有限公司 編著,Abaqus實務入門引導,全華出版社,2007
23. Abaqus/Theory Manual version6.11, (2011)
24. Abaqus/User Manual version6.6, (2006)
25. S. Kalpakjian, S. R. Schmid, Manufacturing Engineering and Technology 5th Edition, Pearson Prentice Hall, Singapore, (2006).
26. 戴宜傑,沖壓加工與沖模設計,新陸書局, (1999).
27. 邱先拿,沖壓模具設計手冊,金屬工業研究發展中心, (2000).
28. 吳孟賢,不同厚度與晶粒尺寸之比值對微引伸成形之影響,碩士論文,國立台灣科技大學, (2010).
29. 楊植雅,超音波震動對微引伸成形之影響,碩士論文,國立台灣科技大學, (2010).
30. 蔡毅瑋,非軸對稱板材成形極限與翹曲現象之分析,博士論文,國 立台灣科技大學, (2007).
31. J. N. Reddy, An introduction to the finite element method, McGraw-Hill, (1984).
32. W. N. Chen, D. J. Han, Plasticity for structural engineers, GAULIH BOOK CO. LTD, (1995).
33. F. Blaha and B. Langenecker, Naturwissenschaften, Vol.42, pp.556 (1955).
34. R. Pohlman and B. Lehfeldt, “Influence of Ultrasonic Vibration on Metallic Friction,” Ultrasonics, pp.178-185 (1966).
35. M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J. C. Hung, Y. C. Tsai and C. H. Hung, “Simulation of Ultrasonic Vibration Drawing Using the Finite Element Method (FEM),” Journal of Materials Processing Technology, Vol.140, pp.30-35 (2003).
36. T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito and H. Hatano, “An Application of Ultrasonic Vibration to the Deep Drawing Process,” Journal of Materials Processing Technology, Vol.80-81, pp.406-412 (1998).
37. 李佳緯, 模具幾何在超音波輔助微沖壓成形之影響研究,碩士論文,國立中興大學 (2002).
38. 島川正憲著,賴耿陽譯,超音波工學理論實務及實務,復漢出版社有限公司, (2001).
39. 賴耿陽,高周波工業技術應用,復漢出版社, (1997).
40. 京華超音波股份有限公司,規格手冊, (2010).
41. ASTM E345-93, “Standard Test Methods of Tension Testing of Metallic Foil,” American Society for Testing and Materials, Annual Book of ASTM Standards, Vol.3, No.1, pp.417-421, West Conshohocken, PA (2003).

QR CODE