簡易檢索 / 詳目顯示

研究生: 曾士誠
Shih-cheng Tseng
論文名稱: 礦化劑對於水熱法成長氧化鋅奈米桿之影響
Mineralizer effect of Zinc Oxide nanorods by hydrothermal method
指導教授: 劉進興
Chin-Hsin J. Liu
口試委員: 戴 龑
Yian Tai
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 氧化鋅礦化劑特性吸附
外文關鍵詞: ZnO, mineralizer, specific adsorption
相關次數: 點閱:324下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以水熱法成長氧化鋅奈米桿,探討在前驅溶液中添加礦化劑對氧化鋅奈米桿之影響。  
第一部分探討不同礦化劑(SnCl4、NH4Cl及NaCl)對氧化鋅奈米桿性質之影響。礦化劑大多是離子化合物,加至前驅溶液時,可改變奈米桿界面的離子強度及電荷密度。由於氧化鋅結構含極性晶面以及非極性晶面,極性晶面又可分為正極面(positive polar surface)以及負極面(negative polar surface)。奈米桿之c軸方向為,含Zn離子之 正極面與含O離子之 負極面交互堆疊。由於 正極面之Zn層成長速率較迅速, 負極面之O層成長速率最緩慢,[Cl-]離子在負極面之特性吸附乃得以阻止Zn層之推疊,使軸向成長速率減緩,而有利於徑向成長,因而改變奈米桿之aspect ratio。除了特性吸附現象外,加入礦化劑也會改變前驅溶液之pH值,例如添加NaCl會因鹽析效應使pH值上升,添加NH4Cl會因共同離子效應使pH下降。pH值會影響溶液中[Zn2+]/[OH-]比例,使表面構形以及組成也會有不同的影響。
第二部分以NaCl為礦化劑,探討NaCl濃度對於氧化鋅奈米桿的影響。 [Cl-]離子對氧化鋅正極面有特性吸附現象,吸附在c軸成長晶面,可抑制c軸的成長,進而改變氧化鋅奈米桿aspect ratio以及終端構形。
受到特性吸附的影響,可使成長出的奈米桿有較佳的(002)優選晶相及晶相品質。而氧化鋅奈米桿表面吸附現象、奈米桿內部均勻度以及放光特性也隨著NaCl濃度而產生變化。
第三部分探討熱處理溫度對於氧化鋅奈米桿放光特性之影響。退火處理使得奈米桿中之缺陷產生重組(recombination), 因而改變其放光特性。


In this work, ZnO nanorods were synthesized by two step method. And we add some mineralizer to precursors, to observe meneralizer effect of ZnO nanorods.
Part one, investigate the different kind mineralizer (SnCl4、NH4Cl and NaCl) effect of ZnO nanorods. Due to mineralizer are ionic compound mostly, when mineralizer add to the hydrothermal solution, it will change ionic strength and surface density of the interface. ZnO is a hexagonal lattice, belonging to the space group P63mc, and is characterized by two interconnecting sublattices of [Zn2+] and [O2-], such that each Zn ion is surrounded by a tetrahedral of O ions, and vice-versa. This tetrahedral coordination gives rise to polar symmetry (positive polar surface and negative polar surface) along hexagonal axis. Mineralizer ionic will species adsorption with ZnO nanorods polar surface,then c direction growth rate decrease. growth rate is much faster than other surface, and growth rate is the slowest. So mineralizer anion is major effect ZnO nanorods growth rate ionic in hydrothermal solution. Different mineralizer will make different pH value in hydrothermal solution. For example, if add NaCl, it will produce “salt effect” and solution pH value increase. If add NH4Cl, it will produce “common ionic effect” and solution pH value decrease. Different pH value will make different [Zn2+]/[OH-] ratio、surface morphology and composition.
Part two, investigate the NaCl concentration effect of ZnO nanorods. It can be suggested that negative ions [Cl-] in the solution are adsorbed on positive polar surface of ZnO [0001] surface. And this phenomenon will decrease ZnO nanorods c-axial direction growth rate, change nanorods aspect ratio and terminal morphology.
It will increase crystallization by selection adsorption, let ZnO nanorods have the best (002) quality. Otherwise nanorods composition, nanorods emission characteristic, and nanorods uniform will change by different mineralizer concentration.
Part three, investigate the annealing treatment of ZnO nanorods. Thermal treatment will effect of ZnO nanorods emission characteristic. Because thermal treatment will decrease defect concentration. The defect will recombination, then ZnO nanorods crystallization increase.

Key word: Zinc Oxide, mineralizer, species adsorption.

中文摘要 I Abstract III 誌 謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1奈米科技簡介 1 1.2太陽能電池元件 2 1.3奈米感測器元件 3 1.4研究動機 4 第二章 文獻回顧 6 2.1材料簡介 6 2.1.1半導體(Semiconductor)介紹 6 2.1.2氧化鋅(Zinc Oxide)簡介 7 2.2氧化鋅晶體結構 7 2.2.1晶相簡介 7 2.2.2氧化鋅晶體結構 10 2.3氧化鋅特性 13 2.3.1氧化鋅之機械性質 13 2.3.2氧化鋅之導電性 15 2.3.3氧化鋅缺陷 17 2.3.4氧化鋅光學性質 20 2.4氧化鋅各種成長方法簡介 23 2.4.1以水熱法成長氧化鋅奈米桿 25 2.4.2噴霧裂解法(Spray Pyrolysis) 31 2.5礦化物的應用與簡介 35 2.6數值分析法 36 第三章 實驗方法與步驟 37 3.1實驗藥品 37 3.2儀器設備 37 3.3實驗程序 39 3.4玻璃基板之清洗程序 40 3.5氧化鋅奈米桿之製備 41 3.5.1以噴霧裂解法製備氧化鋅薄膜 41 3.5.2水熱法製備氧化鋅奈米桿 43 3.6氧化鋅奈米桿之熱處理 44 3.7結構分析與性質量測儀器 44 第四章 結果與討論 48 4.1以噴霧裂解法製作氧化鋅薄膜 48 4.2添加不同礦化劑至前驅溶液進行水熱反應之影響 53 4.2.1水熱法製備氧化鋅奈米桿 53 4.2.2礦化劑種類對氧化鋅奈米桿之影響 54 4.2.2.1礦化劑種類對於氧化鋅奈米桿表面結構之影響 54 4.2.2.2礦化劑種類對氧化鋅奈米桿之晶相分析 58 4.2.2.3不同種類礦化劑的影響 62 4.3 NaCl礦化劑濃度對氧化鋅奈米桿之影響 65 4.3.1添加不同濃度NaCl對奈米桿表面構形之影響 65 4.3.2添加不同濃度NaCl對奈米桿成長之影響 69 4.3.3添加不同濃度NaCl對奈米桿之晶相分析 71 4.3.4添加不同濃度NaCl對奈米桿之TEM分析 74 4.3.5添加不同濃度NaCl對奈米桿組成之影響 78 4.3.5.1氧化鋅奈米桿表面組成分析(XPS) 78 4.3.5.2氧化鋅奈米桿之縱深分析(XPS) 81 4.3.6添加不同濃度NaCl對奈米桿之放光特性影響 83 4.4添加NaCl礦化劑之氧化鋅奈米桿動力學研究 89 4.4.1添加不同濃度NaCl對奈米桿成長動力學之影響 89 4.4.2不同成長區間下之奈米桿表面結構分析 91 4.5熱處理對氧化鋅奈米桿之影響 95 4.5.1熱處理後氧化鋅奈米桿之放光特性 95 4.5.2熱處理後氧化鋅奈米桿之表面組成分析(XPS) 98 第五章 結論 101 第六章 參考文獻 103

1. 黃德歡, 【改變世界的奈米技術】, 工研院圖書H032413.
2. T. W. Ebbesen, J. Phys. Chem. Solid 57, 951 (1996).
3. J. Sloan, J. Cook, J. R. Heesom, M. L. H. Green, and J. L. Hutchison, J. Cryst. Growth 173, 81 (1997).
4. J. J. Wu, and S. C. Liu, J. Phys. Chem. 106, 9546 (2002).
5. J. J. Wu, and S. C. Liu, Adv. Master. 14, 215 (2002).
6. P. Yang, and C. M. Lieber, Science 273, 1836 (1996).
7. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, J. Mater. Chem. 9, 3173 (1999).
8. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999).
9. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater. 12, 746 (2000).
10. E. Hosono, S. Fujihara, K. Kakiuchi, and H. Imai, J. Am. Chem. Soc. 126, 7790-7791 (2004).
11. M. A. Greenl, and K. Emery, Prog. Photovolt: Res. Appl. 14, 45 (2006).
12. H. Cheng, J. Ma, Z. Zhao, and L. Qi, Chem. Mater. 7, 663-671 (1995).
13. Z. Berkovitch-Yellin, J. V. Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, J. Am. Chem. Soc. 107, 3111-3122 (1985).
14. A. Wander, and N. M. Harrison, J. Chem.Phys. 115, 5 (2001).
15. Y. Sun, D. J. Riley, and M. N. R. Ashfold, J. Phys. Chem. B 110, 15186-15192 (2006).
16. L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, J. Phys. Chem. B 109, 13519-13522 (2005).
17. C. Jagadish, and S. Pearton, Thin Films and Nanostructure, Elsevier (2006).
18. L. Schmidt-Mende, and J. L. MacManus-Driscoll, Materialstoday 10, 40 (2007).
19. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Chem. Phys. Lett. 431, 352 (2006).
20. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001).
21. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett. 3, 235 (2003).
22. G.W. She , X.H. Zhang, W.S. Shi, X. Fan, J. C.Chang, C.S. Lee, S.T. Lee, and C.H. Liu, Appl. Phys. Lett. 92, 053111 (2008).
23. 許樹恩, 吳泰伯, X光繞射原理與材料結構分析, 中國材料科學學會 修訂版(1994).
24. L. Zhang, and H. Huang, Appl. Phys. Lett. 90, 023115 (2007).
25. O. Dulub, U. Diebold, and G. Kresse, Phys. Rev. Lett. 90, 016102 (2003).
26. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
27. N. W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, and Y. Lu, Mater. Sci. Semiconductor Process. 2, 247 (1999).
28. Y. M. Chiang, D. BirnieⅢ, and W. D. Kingery, Physical Ceramics, John Wiley & Sons, Inc. (1997).
29. S. J. Chang, Y. K. Su, and Y. P. Shei, J. Vac. Sci.Technol. A 13, 381 (1995).
30. Y. Kashiwaba, K. Haga, H. Watanabe, B. P. Zhang, Y. Segawa, and K. Wakatsuki, Phys. Status Solid B 229, 921 (2002).
31. Roy. G. Gordon, MRS Bulletin 25, 52 (2000).
32. S. M. Rozati, and Sh. Akesteh, Materials Characterization 58, 319-322 (2007).
33. J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chi, Journal of The Electrochemical Society 154, H521-H524 (2007).
34. J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, and B. H. Zhao, J. Appl. Phys. 101, 083705 (2007).
35. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, and C. Liu, J. Phys. Chem. C 111, 1900 (2007).
36. J. Han, P. Q. Mantas, and A. M. R. Senos, Journal of European Ceramic Society 22, 49-59 (2002).
37. A. Umar, B. Karunagaran, E-K. Suh, and Y. B. Hahn, Nanotechnology 17, 4072 (2006).
38. H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, E. A. Fitzgerald, and C. V. Thompson, Appl. Phys. Lett. 87, 101908 (2005).
39. X. Liu, X. Hu, H. Cao, and R. P. H. Chang, J. Appl. Phys. 95, 3141 (2004).
40. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, A. Appl. Phys. Lett. 68, 403 (1996).
41. A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).
42. Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, and J. H. Yang, Appl. Phys. Lett. 87, 211912 (2005).
43. D. Li, Y. H. Leug, A. B. Djuriši , Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, Appl. Phys. Lett. 85, 1601 (2004).
44. M. Gomi, N. Oohira, K. Ozaki, and M. Koyano, Japan. J. Appl. Phys. 42, 481 (2003).
45. W. M. Kwok, Y. H. Leung, A. B. Djuriši , W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 87, 093108 (2005).
46. R. M. B. Cross, M. M. De Souza, and E. M. S. Narayanan, Nanotechnology 16, 2188-2192 (2005).
47. C. Chandrinou, N. Boukos, C. Stogios, and A. Travlos, Microelectronics Journal 40, 296-298 (2009).
48. C. C. Lin, H. C. Liao, and S. Y. Chen, J. Vac. Sci. Technol. B 24, 304-307 (2006).
49. X. Meng, B. Lin, B. Gu, J. Zhu, and Z. Fu, Solid State Communications 135, 411 (2005).
50. T. Okada, B. H. Agung, and Y. Nakata, Appl. Phys. A 79, 1417 (2004).
51. G. R. Li, C. R. Dawa, Q. Bu, F. L. Zhen, X. H. Lu, Z. H. Ke, H. E. Hong, C. Z. Yao, P. Liu, and Y. X. Tong, Electrochemistry Communication 9, 863-868 (2007).
52. M. Guo, P. Diao, and S. Cai, Applied Surface Science 249, 71 (2005).
53. J. Song, and S. Lim, J. Phys. Chem. C 111, 596 (2007).
54. D. Wang, C. Song, Z. Hu, W. Chen, and X. Fu, Materials Letters 61, 205 (2007).
55. X. Hou, F. Zhou, and W. Liu, Mater. Lett. 60, 3786 (2006).
56. H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, and D. Que, Mater.Lett. 59, 1696 (2005).
57. M. N. R. Arshfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, Thin Solid Film 515, 8679 (2007).
58. C. X. Xu, A. Wei, X. W. Sun, and Z. L. Dong, J. Phys. D; Appl. Phys. 39, 1690 (2006).
59. Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, Chem. Mater. 17, 1001 (2005).
60. D. Perednis, and L. J. Gauckler, Journal of Electroceramics 14, 103 (2005).
61. A. R. Balkenende, A. Bogaerts, J. J. Scholtz, R. P. M. Tijburg, and H. X. Willems, Philips Journal of Research 50, 365 (1996).
62. R. Rajan, and A. B. Pandit, Ultrasonic 39, 235 (2001).
63. A. M. Ganan-Calvo, J. Davila, and A. Barrero, J. Aerosol Sci. 28, 249 (1997).
64. C. H. Chen, E. M. Kelder, and J. Schoonman, J. Eur. Ceram. Soc. 18, 1439 (1998).
65. B. J. Lokhande, P. S. Patil, and M. D. Uplane, Matter. Lett. 57, 573 (2002).
66. H. H. Afifty, S. A. Nasser, and S. E. Demian, J. Mater. Sci: Materials in Electronics 2, 152 (1991).
67. X. Liu, Z. Jin, S. Bu, J. Zhao, and Z. Liu, J. Am. Ceram. Soc. 89, 1226-1231 (2006).
68. M. Guo, P. Diao, and S. Cai, Applied Surface Science 249, 71-75 (2005).
69. J. Qiu, X. Li, W. Yu, X. Gao, W. He, S. Park, Y. Hwang, and H. Kim, Thin Solid Films xxx, xxx (2008).
70. R. Romero, D. Leinen, E. A. Dalchiele. J. R. Ramos-Barrado, and F. Martin, Thin Solid Film 515, 1942 (2006).
71. L. Zhang, Z. Chen, Y. Tang, and Z. Jia, Thin Solid Film 492, 24-29 (2005).
72. J. Liu, S. Lee, K. Lee, Y. H. Ahn, J. Y. Park, and K. H. Koh, Nanotechnology 19, 185607 (2008).
73. X. Wang, C. J. Summers, and Z. L. Wang, Appl Phys Lett 86, 013111 (2005).
74. K. B. Oldham, and J. C. Myland, Fundamentals of electrochemical science, 128 (1994)
75. D. Wang, X. Meng, Z. Chen, and Q. Fu, Physical E 40, 852 (2008).
76. Y. Wang, X. Li, G. Lu, X. Quan, and G. Chen, J. Phys. Chem. C 112, 7332 (2008).
77. D. T. Harvey, and R. W. Linton, Colloid and Surfaces 11, 81-96 (1984).
78. G. Ballerini, K. Ogle, and M. -G. Barthes-Labrousse, Applied Surface Science 253, 6860-6867 (2007).
79. S. Lee, Y. Jeong, S. Jeong, J. Lee, M. Jeon, and J. Moon, Superlattices and Microstructure 44, 761-769 (2008).
80. X. Zhang, W. G. Sloof, A. Hovestad, E. P. M. van Westing, H. Terryn, and J. H. W. de Wit, Surface & Coating Technology 197, 168-176 (2005).
81. J. Qiu, X. Lin, W. He, S. J. Park, H. K. Kim, Y. H. Hwang, J. H. Lee, and Y. D. Kim, Nanotechnology 20, 155603 (2009).
82. A.B. Djurisic, Y. H. Leung, and K. H. Tam, Appl Phys Lett 88, 103107 (2006).
83. K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisˇic´, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, J. Phys. Chem. B 110, 20865-20871 (2006).
84. M. Guo, P. Diao, and S. Cai, Journal of Solid State Chemistry 178, 1864 (2005).
85. R. B. M. Cross, M. M. De Souza, and E. M. Sankara Narayanan, Nanotechnology 16, 2188-2192 (2005).
86. W. Shen, Y. Duan, J. Wang, Q. Wang, and Y. Zeng, Materials and Nanotechnologies 6029, 60290G-1 (2005).

QR CODE