簡易檢索 / 詳目顯示

研究生: 王麒銘
Chi-Ming Wang
論文名稱: 嫘縈系活性碳纖維布應用於超級電容器電極之研究
A study of the Rayon-based activated carbon fiber used in supercapacitor electrodes
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 李俊毅
Jiunn-Yih Lee
王英靖
Ing-Jing Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 超級電容活性碳纖維布
外文關鍵詞: supercapacitor, activated carbon fiber
相關次數: 點閱:307下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以嫘縈梭織布作為活性碳纖維布原料,利用直立連續半開放式高溫爐,通以水蒸氣為活化源,經過氧化、碳化及活化工程,製作出活性碳纖維布,實驗中使用(一)固定水蒸氣活化源供給量(80 ml/min),改變喂布速率(10 cm/min、15 cm/min、20 cm/min),以及(二)固定喂布速率(10 cm/min),改變水蒸氣活化源供給量(80 ml/min、120 ml/min、160 ml/min),在碳化及活化溫度1000℃下,可得到不同加工條件的活性碳纖維布,在此探討活性碳纖維電極的比表面積和孔洞結構,並藉由三極式電化學反應系統,觀察活性碳纖維電極應用於超級電容器的電容性質。
實驗結果顯示,(一)於製備活性碳纖維布過程中,可藉由降低喂布速率,增加樣品的比表面積,使活性碳纖維布可提供較高之電容儲存量。(二)當活化源供給量增加時,可使活性碳纖維的比表面積及中孔百分率提昇,電阻值下降,在活化源供給量160 ml/min時,所製備的活性碳纖維布,其比表面積達2332.1m2/g,中孔比率78.7%,在較慢的掃描速率(5mV/s)時,可得到電容值430.4 F/g,在快速充放電(100mV/s)下仍可保留60%的電容值。


This study used rayon woven fabrics as the raw material of activated carbon fabrics (ACFs), which are manufactured by oxidation engineering, carbonization engineering and activation engineering in a continuous semi-open high-temperature furnace. Firstly, the activated carbon fabricare prepared from two specific manufactured condition: (i) the ACFs are manufactured by difference production rate10 cm/min、15 cm/min、20 cm/min and 80 ml/min steam activator at 1000℃, (ii) the other hand, the ACFs are prepared by difference flow rate of steam activator 80 ml/min、120 ml/min、160 ml/min and 10 cm/min production rate at 1000C. Then, the ACFs’s electrochemical prosperities are evaluated by three-electrode device.
The experiments results (i) show the specific surface area and electrical capacitance would be higher as decrease production rate. The results (ii), which offers higher flow rate of steam activator, the specific surface area and mesopores ratio of ACFs are increased resulting in higher value of electronic conductivity.
The activated carbon fabrics prepared at manufactured condition at 160 ml/min with 10 cm/min production rate, obtained specific surface area 2332.1m2/g, mesopores percentage 78.7%, which shows 430.4 F/g at low rate charge (5 mV/s) and the 60% capacitance rotation at high rate charge (100 mV/s).

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2超級電容器簡介 2 1.3活性碳與活性碳纖維之發展、差異 5 1.4研究動機與目的 9 第二章 文獻回顧及基本理論 10 2.2前處理工程 12 2.2.1精練工程 12 2.1.2耐燃工程 13 2.2氧化、碳化及活化工程 15 2.2.1氧化工程(低溫裂解工程) 15 2.2.2碳化工程 18 2.2.3活化工程 20 2.3活性碳孔洞結構的形成 25 2.4活性碳吸附理論 27 2.4.1吸附機構 27 2.4.2孔洞分析及理論 29 2.4.3等溫吸附曲線 30 2.4.4遲滯圈 34 2.4.5藍牟爾吸附理論 35 2.4.6 BET等溫吸附 39 2.5電雙層的概念與結構 41 2.5.1電雙層的基本原理 41 2.5.2 Helmholtz 電雙層模型 42 2.5.3 Stern電雙層模型 43 2.5.4電雙層結構 45 2.6三極式電化學系統 46 2.7電化學測試方法 47 2.7.1循環伏安法 47 2.7.2交流阻抗分析 48 第三章 實驗 50 3.1實驗材料 50 3.1.1實驗基材 50 3.1.2實驗藥品 50 3.1.3實驗氣體 50 3.2實驗設備 51 3.3測試儀器 51 3.4實驗流程 53 3.5實驗方法 54 3.5.1前處理工程 54 3.5.2氧化、碳化及活化工程 54 3.5.3後處理工程 55 3.6基本物性分析 56 3.6.1產率分析 56 3.6.3比表面積及孔洞性質分析 56 3.6.2表面型態觀察 57 3.7電化學性質分析 57 3.7.1測試裝置 57 3.7.2循環伏安法 58 3.7.3交流阻抗分析 58 第四章 結果與討論 59 4.1產率分析 60 4.1.1喂布速率的影響 60 4.1.2活化源供給量的影響 61 4.2氮氣等溫吸附及脫附的探討 62 4.2.1 喂布速率的影響 62 4.2.2活化源供給量的影響 64 4.3 BET比表面積與孔洞性質分析 65 4.3.1 喂布速率的影響 65 4.3.2活化源供給量的影響 66 4.4 表面微結構觀察 67 4.4.1 喂布速率的影響 67 4.4.2活化源供給量的影響 69 4.5 循環伏安曲線 71 4.5.1 喂布速率的影響 71 4.5.2活化源供給量的影響 74 4.6 循環伏安法之電容值分析 76 4.6.1喂布速率的影響 76 4.6.2活化源供給量的影響 77 4.7 交流阻抗分析 78 4.7.1喂布速率的影響 78 4.7.2活化源供給量的影響 81 第五章 結論 83 參考文獻 85

1. M. Inagaki, H. Konno, and O. Tanaike, “Review Carbon materials for electrochemical capacitors”, Journal of Power Sources , vol.195, pp 7880~7903(2010).
2. R. Ko‥tz and M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta , vol. 45, pp 2483~2498(2000).
3. H. E. Becker, U.S. Patent 2 800616 (to General Electric)(1957).
4. P. Kurzweil, “Electrochemical Capacitors”, Encyclopedia of Electrochemical Power Sources, pp 956~957, Lightening Energy, Dover, NJ, USA, 2009.
5. 白玉良,「電器二重層電容器的現況與展望」,能源季刊,第三十八卷,第三期,第44~52頁(2008)。
6. 方偉權,「超高電容器電極薄膜材料應用及其製作技術」,工業材料雜誌,第257期,第145~153頁(2008) 。
7. 洪鍈瑛、林麗瓊、陳貴賢,「超級電容的契機」,台灣奈米會刊,第18期,第51~55頁(2009) 。
8. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, and S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes” , Journal of Power Sources, vol.203, pp305~309(2002).
9. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, and W. Li, “ A doped activated carbon prepared from polyaniline for high performance supercapacitors”, Journal of Power Sources, vol.195, pp 1516~1521 (2010).
10. K. Hung, C. Masarapu, T. Ko, and B. Wei, “Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric”, Journal of Power Sources, vol.193, pp 944~949(2009).
11. B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, and Y. Yang, “Activated carbon with high capacitance prepared by NaOH activation for supercapacitors”, Materials Chemistry and Physics, vol. 124,pp 504~509 (2010).
12. B. Xu and Y. P. Feng, “Electronic structures and transport properties of sulfurized carbon nanotubes”, Solid State Communications, vol.150, pp 2015~2019(2010).
13. Y. Zhou, Z. Y. Qin, L. Li, Y. Zhang, Y. L. Wei, L. F. Wang, and M. F. Zhu, “Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials”, Electrochimica Acta, vol.55, pp 3904~3908(2010).
14. A. R. Boccaccini, J. Cho, T. Subhani, C. Kaya, and F. Kaya, “Electrophoretic deposition of carbon nanotube–ceramic nanocomposites” , Journal of the European Ceramic Society, vol.30, pp 1115~1129 (2010).
15. Q. Wu, Y. Xu, Z. Yao, A. Liu, and G. Shi, “Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films”, ACS Nano, Volume 4, Issue 4, 27 April, pp 1963~1970 (2010).
16. K. M. Lin, K. H. Chang, C. C. Hu, and Y. Y. Li, “Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density”, Electrochimica Acta, vol.54, pp 4574~4581 (2009).
17. Y. Hu, J. Wang, X. Jiang, Y. Zheng, and Z. Chen , ”Facile chemical synthesis of nanoporous layeredδ-MnO2 thin film for high-performance flexible electrochemical capacitors”, Applied Surface Science, vol.271, pp 193~201(2013).
18. W. Bingbing, Y. Zhongdong, and X. Xiangning, “Super-capacitors energy storage system applied in the microgrid”, IEEE, pp 1002~1005(2010).
19. D. Iannuzzi and P. Tricoli, “Battery and supercapacitor combination for a series hybrid electric vehicle”, IEEE , pp 750~760(2010).
20. C.W. Sheele, Chemical Observation on Air and Fire, pp 182(1780).
21. F. Fontana, Memorie Mat. Fis. Soc. Ital. Sci 1679(1777).
22. J. J. Freeman, F. G. R. Gimblett, R. A. Roberts, and K. S. W. Sing, “Studies of Activated Charcoal Cloth.Ⅱ, Carbon, Vol. 25, pp 565~568 (1987).
23. H. 凱利、E. 巴德(德)著,魏同成 譯,活性炭及其工業應用,中國環境科學出版社,第1~2, 14頁(2000)。
24. S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski, “The Characterization of Activated Carbons with Oxygen and Nitrogen Surface Groups,” Carbon, Vol. 35, pp 1799~1810(1997).
25. J. J. Freeman, F. G. R. Gimblett, R. A. Roberts, and K. S. W. Sing, Carbon, vol.25, pp 559(1987).
26. J. J. Freeman and F. G. R. Gimblett, Carbon, vol.25, pp 565(1987).
27. J. J. Freeman, F. G. R. Gimblett, R. A. Roberts, and K. S. W. Sing, Carbon, vol. 26, pp 7(1988).
28. J. J. Freeman and F. G. R. Gimblett, Carbon, vol.26, pp 501(1988).
29. J. J. Freeman, F. G. R. Gimblett, R. A. Roberts, and K.S.W. Sing, Carbon, vol.27, pp 85(1989).
30. 柯澤豪、洪凱炫,「活性碳纖維的研發與最新應用」,化工技術,第十卷,第二期,第134~154頁(2002)。
31. 蘭淑澄編著,活性炭水處理技術,中國環境科學出版社,第9頁(1992)。
32. 本刊資料室,「纖維狀活性碳「FAC」」,染化雜誌,第六十一期,第40~44頁(1989)。
33. 柯澤豪、李建鴻、胡忠華,「活性碳纖維之發展及其應用」,化工技術,第六卷,第四期,第134~140頁(1998)。
34. 許永綏編譯,纖維化學,徐氏文教基金會出版,第31~49頁(2002)。
35. 劉熾章著,纖維理化,新學識文教出版中心,第110~111頁,第124~125頁(1996)。
36. 邱永亮、魏盛德編譯,染色化學(合),徐氏文教基金會出版,第三冊,第二章,第9~11頁(2000)。
37. J. W. Schnyten, Advances in Chemsity Series, vol. 9, pp 7 (1953).
38. T. P. Nevell and S. H. Zeronian, “Cellulose Chemistry and its applications”, Ellis Horwood, pp 431 (1985).
39. J. B. Donnet, R. C. Bansal, and Carbon Fibers, Marcel Dekker, pp 46~55 (1990).
40. H. Marsh and J. Griffiths, Proc. Intern. Symp. ON Carbon. New Process and New Application, P81, Kagaku Gi justsu-sha, Toyohashi, Tokyo, Japan(1982).
41. B. P. Jose, C. de S. Jose, J. P. Jose, A. P. Jesus, and C. B. Roop, “Effect of Gasification on The Porous Characteristics of Activated Carbons from A Semianthracite”, Carbon, vol.33, pp 801~807(1995).
42. S. F. Grebeunikov and Fridman, fiber chem., vol 21, pp 511(1983).
43. H. H. Marsh and B. Rand, “The Process of Activation of Carbons by Gasification with CO2 -I”, Carbon, vol. 9, pp 47~61 (1971).
44. P. G. Vilchez, A. Linares-Solano, J. de D. Lopez-Gonzalez, and F. Rodriguez-Reinoso, “The Controlled Reaction of Active Carbons with Air at 350℃-I”, Carbon, vol. 17, pp 441~446 (1979).
45. F. Rodriguez-Reinoso, A. Linares-Solano, and J. M. Martin-Martinez, “The Controlled Reaction of Active Carbons with Air at 350℃-II”, Carbon, vol. 22, pp 123~130 (1984).
46. M. C. Mittelmeijer-Hazeleger and J. M. Martin-Martinez, Microporosity Development of An Anthracite” , Carbon, vol. 30, pp 695~709 (1992).
47. R. Nacco and E. Aquarone, “Preparation of Active Carbon from Yeast” ,Carbon, vol. 16, pp 31~34 (1978).
48. J.de D. Lopez-Gonzalez, F. Martinez-Vilchez, and F. Rodriguez-Reinoso, “Preparation and Characterization of Active Carbons from Olive Stones” , Carbon, vol. 18, pp 413~418 (1980).
49. R. Torregrosa and J. M. Martin-Martinez, “Activation of Lignocellulosic Materials” , Fuel, vol. 70, pp 1173~1180 (1991).
50. F. Rodriguez-Reinoso and M. Molina-Sabio, “Activated Carbons from Lignocellulosic materials,” Carbon, Vol. 30, pp 1111~1118 (1992).
51. 真田雄三、鈴木基之、藤元薰,新版 活性炭-基礎と应用-,講談社,第47~54頁(1997)。
52. 炭素材料學會編,活性炭-基礎與應用,講談社,第84~86頁(1989) 。
53. Lowell S. and Joan E. Shields, Powder Surface Area and Porosity, Chapman and Hall, pp 8~35, 59~60, 217~220 (1987).
54. 賀福、王茂章,碳纖維及其複合材,科學出版社(1995) 。
55. J. N. Bohra, J. Scient, Ind. Res., vol. 34, pp 451(1975).
56. F. J. Vestola and P. L. Jr. Walker, J. of Chem. Phys., vol. 58, pp 20(1961).
57. M. Isao and K. Yozo, Carbon, vol. 32, pp 1119~1127 (1994).
58. W. A. Stell, M. B. Rao, W. A. Jenkins, Langmuir, vol. 1,pp.137(1985).
59. Manual of Deginitions, Terminology and Symbols in Colloid and Surface Chemistry, IUPAC-Sekretariat (1972).
60. L. A. Jonas, “Reaction Steps in Gas Sorption by Impregnated Carbon” , Carbon, vol.16, pp 115~119(1978).
61. M. Suzuki, Adsorption Engineering, Kodansha. pp 35~37, 1989.
62. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, “Theory of The van der Waals Adsorption of Gas” , J. Amer. Chem. Soc., vol. 62, pp 1723~1732 (1940).
63. C. Pierce and R. N. Smith, “Heats of Adsorption. I” , J. Phy. Colloid & Chem., vol. 52, No. 7, pp 1111~1115 (1948).
64. C. Pierce and R. N. Smith, “Heats of Adsorption. II”, J. Phy. Colloid & Chem., vol. 52, No. 7, pp 1115~1128 (1948).
65. C. Pierce and R. N. Smith, “Heats of Adsorption. III” , J. Phy. Colloid & Chem., vol. 54, No. 3, pp 354~364 (1950).
66. S. Lowell and J. E. Shields, Powder surface area and porosity, Chapman and Hall, pp 8~35,59~60, 217~221(1987).
67. C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry, 2nd, Completely Revised and Updated Edition, New York, 2007.
68. J. B. Allen, and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, New York: John Wiley and Sons, 2000.
69. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, “Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte” , Journal of Power Sources , vol.195, pp 2118~2124(2010).
70. A. G. Pandolfo, and A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, vol. 157(1), pp 11~27 (2006).
71. V. Ruiz, C. Blanco, M. Granda, R. Menendez, and R. Santamaria, “Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors”, Journal of Electroanalytical Chemistry, vol. 618(1-2), pp 17~23 (2008).
72. H. Probstle, C. Schmitt, and J. Fricke, “Button cell supercapacitors with monolithic carbon aerogels”, Journal of Power Sources, vol.105(2), pp 189~194(2002).

無法下載圖示 全文公開日期 2018/07/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE