簡易檢索 / 詳目顯示

研究生: 林聖哲
Sheng-Zhe Lin
論文名稱: 強化相比例對AZ61/SiC鎂基複合材料鑄錠 及珠擊後之機械性質影響研究
Effect of reinforcement content on the mechanical properties of as cast and shotpeened AZ61/SiC magnesium matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chiu Chun
陳元方
Yuan-Fang Chen
陳復國
Fuh-Kuo Chen
徐茂濱
Mau-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 109
中文關鍵詞: 鎂基複合材料微米碳化矽重力鑄造機械性質珠擊
外文關鍵詞: magnesium matrix composites, SiC particles, Stir casting, mechanical properties, shot peening
相關次數: 點閱:365下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用鑄造方式製備AZ61鎂基複合材料,使用微米SiC顆粒作為所需添加的強化相,並以攪拌鑄造法的製程將強化相融入AZ61鎂合金中,強化相添加比例分別為1wt.%及2wt.%,之後對材料進行T4固溶處理,再使用離心式珠擊機進行珠擊,探討添加不同比例強化相及珠擊前後對鎂合金機械性質的影響。從實驗結果中可以發現添加微米SiCp顆粒能夠有效的達到晶粒細化效果,提升材料拉伸強度及疲勞循環壽命,其中則以微米1wt.% SiCp 的強化效果最優良,透過T4熱處理能使得β−Mg17Al12相溶解於機材中並析出鋁錳相,該相的析出有助於提升材料之延展性,並且可以從中發現Mg2Si相,此析出物有助於機械性質的提升。珠擊實驗結果顯示珠擊能有效提升鎂基複合材料的降伏強度、極限抗拉強度及疲勞循環壽命,而在較高負荷的疲勞試驗條件下,循環壽命提升的效果更為顯著,然而該材料的伸長量會因為珠擊後表面粗糙導致應變不均而降低伸長量。


Magnesium alloy AZ61 was used as matrix and SiC as reinforcement to produces metal matrix composites. Stir casting method was used to produce 1wt% and 2wt% of SiC reinforcement. As-cast billets were shot-peened by barrel type shot blasting machine. The ingots were investigated for mechanical and microstructural properties. The shot peening effects and reinforcement contents effects have been included.Experimental results reveal that grain size is decreased with the addition of SiC when compared with monolithic AZ61.From the experimental results it can be found that the grain size tends to decrease which causes the enhancement in yield strength(YS), ultimate tensile strength(UTS) and fatigue life when compared with the AZ61. AZ61 reinforced with 1wt%SiC has best mechanical properties. The T4 treatment dissolves the β-Mg_17 Al_12 (still few present) and generates Al-Mn phases which improves the ductility of the composites. Moreover, presence of Mg2Si phase also improves mechanical properties of AZ61-SiC metal matrix composites.The shot peening process has also increased the ultimate tensile strength(UTS), yield strength(YS) and fatigue life of the AZ61-SiC MMCs. The fatigue behavior was found better under the high stress conditions. The elongation of AZ61-SiC MMCs is decreased by differential strain of surface.

摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VIII 第一章 緒論 1 1.1. 前言 1 1.2. 研究動機與目的 2 1.3. 文獻回顧 3 1.3.1. 本實驗室鎂基複合材製程回顧 4 1.3.2. 強化相SiC對鎂基複合材料之機械性質的影響 6 1.3.3. 熱處理對鎂合金機械性質、晶粒之影響 7 1.3.4. 珠擊加工對鎂基複合材料之機械性質的影響 8 1.3.5. 阿爾曼試片對珠擊強度之測定 12 1.4. 文獻回顧心得 15 第二章 研究理論基礎 17 2.1. 鎂合金與基本性質 17 2.1.1. 鎂合金命名規則 19 2.1.2. 合金元素對鎂合金之影響 21 2.2. 鎂合金之強化機制 24 2.2.1. 晶粒細化 24 2.2.2. 固溶強化 25 2.2.3. 析出強化 26 2.2.4. Orowan強化 26 2.2.5. 負荷影響 27 2.2.6. 熱膨脹係數差異影響 28 2.2.7. 熱處理 28 2.3. 珠擊加工 30 2.3.1 珠擊加工特點 30 2.3.2 珠擊加工條件 31 第三章 實驗方法與步驟 32 3.1 實驗流程 32 3.2 實驗材料 34 3.3 實驗設備 34 3.3.1 電阻式熔煉爐 34 3.3.2 高溫熱處理爐 37 3.3.3 濕式研磨機/拋光機 38 3.3.4 動態拉伸試驗機 (Material Test System, MTS) 39 3.3.5 光學顯微鏡 (Optical Microscope, OM) 41 3.3.6 微型維克氏硬度機 (Micro-Vickers Hardness Tester) 42 3.3.7 X光繞射分析儀 (X-ray Diffraction, XRD) 43 3.3.8 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 44 3.3.9 離心式珠擊機 45 3.3.10 疲勞試驗機 46 3.3.11 阿爾曼試片檢測儀 47 3.4 實驗規劃 48 3.4.1 鎂基複合材料製備 48 3.4.2 拉伸試片規劃 49 3.4.3 疲勞試片規劃 50 3.4.4 珠擊試片規劃 51 第四章 結果與討論 52 4.1 鎂基複合材料微觀結構分析 52 4.1.1 OM金相分析 52 4.1.2 平均晶粒尺寸 64 4.1.3 SEM微觀結構分析 66 4.2 XRD分析 69 4.3 鎂基複合材料機械性質測試 71 4.3.1 硬度實驗 71 4.3.2 拉伸實驗 74 4.3.3 疲勞實驗 78 4.3.4 疲勞破壞表面 82 4.4.4 與本實驗室論文之比較 86 第五章 結論 91 參考文獻 94

1.A. A. Luo, “Magnesium casting technology for structural applications” ,Journal of Magnesium and Alloys 1, pp.2-22, 2013.
2.Hai Zhi Ye, Xing Yang Liu, “Review of recent studies in magnesium matrix composite” , Journal of materials Science 39, pp.6153-6171, 2004.
3.洪品森,「鎂基複合材料的製備及其熱處理後機械性質之研究」,國立中正大學碩士論文,2009。
4.吳懿璋,「強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究」,國立臺灣科技大學機械工程學系碩士論文,2014。
5.陳辛樺,「改善鎂合金及鎂基複合材料AZ61/SiCp 鑄錠品質並探討製程對其機械性質的影響」,國立臺灣科技大學機械工程學系碩士論文,2014。
6.B.V. Manoj Kumar, Bikramjit Basu, V.S.R. Murthy, Manoj Gupta, “The role of tribochemistry on fretting wear of Mg-SiC particulate composites” , Composites: Part A36, pp.13-23, 2005.
7.M.Manoharan, S.C.V. Lim, M.Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process” , Materials Science and Engineering A333, pp.243-249, 2002.
8.P. C. Wang, M. C. Lin, H. C. Lin, K. M. Lin, M. T. Yeh and C. Y. Lin, “Effects of aging treatment on microstructure and mechanical property of an AZ80N magnesium alloy” , Materials Science and Engineering A, Vol. 527, pp.4076-4081 , 2010.
9.L.Zheng, H. Nie, W.Liang, H.Wang, Y.Wang, “Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys” , Journal of Magnesium and Alloys, Vol. 4, Issue 2, pp.115-122, 2016.
10.Md. Shahnewaz Bhuiyana, Yoshiharu Mutoh, A.J. McEvily, “The influence of mechanical surface treatments on fatigue behavior of extruded AZ61 magnesium alloy” , Materials Science and Engineering A, 2012.
11.Chen, Z., et al., “Realistic Finite Element Simulations of ArcHeight Development in Shot-Peened Almen Strips” , Journal of Engineering Materials and Technology 136(4) 041002-041002,2014.
12.Xue-fei Sun, “High strength SiCp/AZ91 composite assisted by dynamic precipitated 〖Mg〗_17 〖Al〗_12 phase” , Journal of Alloys and Compounds 732, pp.328-335, 2018.
13.K.B. Nie, “Development of SiCp/AZ91 magnesium matrix nanocomposites using ultrasonic vibration”, Materials Science and Engineering A 540, pp.123–p.129, 2012.
14.K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, X.S. Hu, “Effect of ultrasonic vibration and solution heat treatment on microstructures and tensile properties of AZ91 alloy” , Materials Science and Engineering A 528, pp.7484-7487, 2011.
15.Xing Yang Liu, “Review of recent studies in magnesium matrix composite” , Journal of materials Science 39, pp.6153-6171, 2004.
16.張玉龍,趙中魁,實用輕金屬材料手册,2006。
17.L. Zhang, Q.D. Wang, W.J. Liao, W. Guo, B. Ye, W.Z. Li, H.Y. Jiang, and W.J. Ding. , “Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles” , Mater. Charact 126, pp.17–27, 2017.
18.Y.T. Yao, L. Jiang, G.F. Fu, L.Q. Chen, “Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique” , Trans. Nonferrous Met. Soc. China 25, pp.2543–2548, 2015.
19.劉彥辰,「AM60/Al_2 O_3p鎂基複合材料擠製管之機械性質與微觀組織研究」,國立中正大學機械工程學系研究所碩士學位論文,2012。
20.劉文勝,「AZ61 鎂合金的疲勞性質與破壞分析」,國立中央大學機械工程學系研究所碩士論文,2000。
21.N. Stanford, D. Atwell, M.R. Barnett, “The effect of Gd on the recrystallisation texture and deformation behaviour of magnesium-based alloys” , Acta Materialia 58, pp.6773-6783, 2010.
22.康永林,王朝輝,「半固態工藝製備奈米SiC顆粒增強AM60鎂合金的研究」, 特種鑄造及有色合金第八期,第18-20頁,2007。
23.許源泉,塑性加工學,全華科技圖書股份有限公司,2004。
24.Tingzhuang Han , Guangsheng Huang, Qianyuan Deng, Guangang Wang, Bin Jiang, Aitao Tang, Yuntian Zhu, and Fusheng Pan, “Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding”, Journal of Alloys and Compounds 745, pp.599-608, 2018.
25.蔡承勳,「不同製程對AZ61/Al2O3P鎂基複合材料機械性質及疲勞之影響」,國立台灣科技大學機械工程系研究所碩士論文,2013。
26.陸仁凱,「7XXX系含鈧鋁合金的顯微結構與機械性質之分析」,國立中央大學機械工程研究所碩士論文,2006。
27.蔡東霖,「利用ECAE及退火處理細化鋁鎂合金晶粒」,國立中山大學材料科學研究所碩士論文,2001。
28.Murugan Subramani, “Experimental and numerical analysis of mechanical and fatigue behavior of magnesium alloy AZ61 with micro-SiC particles” , National Taiwan University of Science Technology master’s thesis, 2018.

QR CODE