簡易檢索 / 詳目顯示

研究生: 黃裕強
Yu-Chiang Huang
論文名稱: 除三注入鎖定除頻器在高注入功率之下鎖定範圍飽和之研究
Locking Range Saturation of Divide-by 3 Injection-Locked Frequency Dividers at High Injection Power
指導教授: 張勝良
Sheng–Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 122
中文關鍵詞: 除三注入鎖定除頻器高注入功率鎖定範圍飽和
外文關鍵詞: Divide-by 3 Injection-Locked Frequency Dividers, High Injection Power, Locking Range Saturation
相關次數: 點閱:301下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在射頻通訊系統中,鎖相迴路(PLL)扮演著極為重要的角色,主要的功能是產生一固定的頻率,使收發機能傳送/接收正確的訊號且降低雜訊影響。PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而為了追求低功耗,低相位雜訊,與較寬的除頻範圍,在這其中又以壓控振盪器和注入鎖定除頻器特性最重要,而本論文主要研製鎖相迴路之注入鎖定除頻器。

首先,我們探討一個寬頻除三注入鎖定除頻器的鎖頻範圍特性,此除頻器使用台積電矽鍺0.18 μm製程,晶片面積為0.859 × 0.817 mm2。此除三除頻器設計基於一電容耦合的壓控振盪器,且利用電阻加入共振腔來增加除頻範圍。此除頻器最佳工作電壓操作在0.8伏特,整體功耗為5.26 mW,在注入強度為0 dbm時,除頻範圍可從6.2 GHz ~ 12.6 GHz,百分比為68.09 %。此除頻器在一般電壓操作下有很大的鎖頻範圍,然而,當電晶體閘極電壓提高時,此除頻器出現三個不重疊的鎖頻範圍,這現象代表原始設計的除頻器內有更多個共振腔的存在。

其次,我們提出一個高注入功率(> 0 dBm)的除三注入鎖定除頻器的鎖頻範圍特性,此除頻器使用nMOS的交叉偶合架構來產生負阻抗抵銷共振腔的能量損耗,並使用台積電0.18 μm製程進行下線。量測其鎖頻範圍,當注入功率增加時會發生飽和現象而導致鎖頻範圍下降,最後甚至使電路無法正常工作。

第三,提出另外一個高注入功率(> 0 dBm)的除三注入鎖定除頻器的鎖頻範圍特性,此除頻器使用線性的混波器且使用台積電0.18 μm製程製作。模擬顯示當注入功率增加時會發生飽和現象而導致鎖頻範圍下降,甚至讓電路無法工作。但量測時因儀器限制了最高注入功率,並沒有發現飽和的現象。對此我們只能透過公式來驗證,就是模擬當注入功率提高時,電晶體的電流比值與鎖頻範圍的關係。

最後,我們從三個不同架構的除三除頻器去探討高功率的注入訊號對於除頻器電路的影響,並配合公式來模擬和驗證此特性是否正確,以一個積體電路設計者的角度來看,這研究是非常實用的,當你知道高功率注入的特性,在設計階段就可以避免除頻器因注入功率過高時而發生的飽和現象,這也是本篇論文最大的研究貢獻。


Phase Lock Loop (PLL), the most important role in radio frequency (RF) communication system, generates fixed frequency for transceiver, so that the transceiver can transmit/receive the correct signal and reduce the impact of noise. PLL consists of Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). In order to pursue low-power, low phase noise and wide locking range: the most important characteristics of performance of VCO and Divider, this thesis presents the design of Injection-Locked Frequency Dividers (ILFDs).

First, we discuss the locking range property of a CMOS wide locking range divide-by-3 injection-locked frequency divider (ILFD), this chip uses standard 0.18 μm BiCMOS process and die area is 0.859 × 0.817 mm2. The ILFD circuit bases on capacitive cross-coupled oscillator and uses dual-resonance RLC resonator with resistor to enhance the locking range. The power consumption of the ILFD core is 5.26 mW and the locking range is from 6.2 to 12.6 GHz (68.09%) at injection power Pinj = 0 dBm. The dual-resonance ILFD has wide locking range in normal operation with reasonable power consumption. However, the dual-resonance ILFD has three non-overlapped locking ranges for the ILFD biased at higher gate bias for the switching FETs and subject to high injection power. This indicates that the originally designed ILFD using multi-resonance resonator have three non-overlapped locking ranges of a triple-resonance ILFD.

Secondly, we present the RF locking range of divide-by-3 injection-locked frequency dividers (ILFDs) subjected to high injection power larger than 0 dBm. The divide-by-3 ILFD bases on a push-push cross-coupled n-core MOS LC-tank oscillator and uses linear mixer and was implemented in 0.18 μm CMOS process. The locking range can saturate at high injection power and then starts decreasing as injection power further increases. Finally the ILFD stops tracking the injection source.
Thirdly, we propose the RF locking range of divide-by-3 injection-locked frequency dividers (ILFDs) subjected to high injection power larger than 0 dBm. The divide-by-3 ILFD uses nonlinear mixer and was implemented in 0.18 μm CMOS process. Simulation shows the locking range saturates at high injection power and then starts decreasing as injection power further increases. Finally the ILFD stops tracking the injection source. Measurement shows no saturation of locking range, and this is limited by the measurement set-up.

Finally, we study the high-power injection effect of frequency divider from three different architecture divide-by-3 dividers. This measurement result was verified by simulation. The research is very practical for circuit designer, they can avoid saturation phenomenon by higher power injection at design process. This is the largest contribution of my thesis.

摘要 Abstract 致謝 Table of Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Background 1.2 Thesis Organization Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 2.1 Introduction 2.2 The parameters of VCO 2.2.1 Center Frequency [Hz] 2.2.2 Phase Noise [dBc/Hz] 2.2.3 Power Dissipation [mW] 2.2.4 Output Power [dBm] 2.2.5 Tuning Sensitivity [Hz/V] 2.2.6 Figure-of-Merit (FoM) [dBc/Hz] 2.2.7 Quality Factor 2.3 The Oscillators Theory 2.3.1 Feedback Oscillators 2.3.2 Resonator and Negative Resistance 2.4 The Classification of Oscillators 2.4.1 Ring Oscillator 2.4.2 LC-Tank Oscillator 2.5 Passive Components Design 2.5.1 MOS Varactor Design 2.5.2 Spiral Inductor Design 2.5.3 Resistor Design 2.5.4 Transformer Design 2.6 Phase Noise in Wireless Communications Chapter 3 Design of Injection Locked Frequency Divider 3.1 Introduction 3.2 Principle of Injection Locked Frequency Divider 3.3 Locking Range 3.4 Switch ILFD 3.5 Noise Analysis 3.5.1 Thermal Noise 3.4.2 Flicker Noise Chapter 4 High Injection Property of ÷3 Capacitive Cross-Coupled Injection-Locked Frequency Divider 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results Chapter 5 Locking Range of Divide-by-3 Injection-Locked Frequency Divider at High-Injection Power (I) 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results Chapter 6 Locking Range of Divide-by-3 Injection-Locked Frequency Divider at High-Injection Power (II) 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results Chapter 7 Conclusions References

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998
[2] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[3] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
[4] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
[5] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992.
[6] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[7] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE Journal of Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[8] J. Tang and D. Kasperkovitz, Oscillator Design Efficiency: A New Figure Of Merit For Oscillator Benchmarking.
[9] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[10] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[11] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905−910, June 2000.
[12] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2054−2065, 1998.
[13] Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699−713, 2000.
[14] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 4, pp. 620−628, Apr. 2001.
[15] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS , vol. 2, pp. 573−576, June. 1999.
[16] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE Journal of Solid-State Circuits, vol. 37, no. 4, pp. 471−480, 2002
[17] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101−109, 1974.
[18] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368−1382, Sept. 2000.
[19] P. L. You and T. H. Huang, “A switched inductor topology using a switchable artificial grounded metal guard ring for wide-FTR MMW VCO applications,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 759−766, Feb. 2013.
[20] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 594−601, Apr. 2004.
[21] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 813−821, June 1999.
[22] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823−826, Sept. 2002.
[23] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741−744, May 2000.
[24] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 5 Nov. 2015, pp. 1888−1889.
[25] S.-L.Jang, “Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,” Analog Integr Circ Sig Process.,Vol. 85, pp 335−341, Nov., 2015.
[26] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider using 6th-order RLC resonator,” IEEE Trans. Very Large Scale Integration Systems, vol. 24, no. 7, pp. 2598−2602, 2016.
[27] S.-L. Jang, and Y.-L. Ciou , “Wide-band triple-resonance divide-by-4 injection-locked frequency divider,” IEEE International Microwave Symposium (IMS2017).
[28] S.-L.Jang, X.-Y. Hang, and W.–T. Liu, “Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, pp. 97–104, 2016.
[29] S.-L.Jang, and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters, vol. 50, 23, pp.1710−1712, 2014.
[30] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299−301, May 2006.
[31] Y. Chao and H. C. Luong, “Analysis and design of wide-band millimeter-wave transformer-based VCO and ILFDs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1416−1425, Sept. 2016.
[32] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 390−392, July, 2010.
[33] C.-W. Chang, S.-L. Jang, and C.-W. Hsieh, “Wide-locking range ÷3 active-inductor injection-locked frequency divider using the push-push oscillator,” Microw. Opt. Technol. Lett., pp. 2771−2773, Dec, 2011.
[34] S.-L. Jang,T.-C. Kung and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic,” IEEE Microw. Wireless Compon. Lett., vol. 26, No. 7, pp. 537−539, July, 2016.
[35] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415−1424, Sep. 2004.
[36] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3injection-locked frequency divider,” IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 27–29.
[37] S.-L. Jang, and C.-W. Chang, “A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 229−231, April, 2010.
[38] Y.-T. Chen, M.-W. Li,H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
[39] S.-L.Jang and C.-Y. Chuang, “Wide-locking range ÷3 series-tuned injection-locked frequency divider,” Analog Integr CircSig Process.,vol. 76, Issue 1, pp. 111−116, 2013.
[40] S.-L.Jang, and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters., vol. 50, 23, pp. 1710−1712, 2014.
[41] S.-L.Jang, C.-Y. Lin and M.-H. Juang, “Enhanced locking range technique for a divide-by-3 differential injection-locked frequency divider,” Electronics Letters., vol. 51, 6, 19 March 2015, pp. 456−458.
[42] S.-L.Jang, T.-C. Kung and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider through enhanced 2nd harmonic,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, 2016.
[43] S.-L.Jang, and J.-H. Hsieh, “A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integrated Circuit Signal Process., Vol. 77, pp. 593−598, 2013.
[44] Shih-Jie Jian, “Design of wide locking range divide-by-3 injection-locked frequency divider and injection-locked frequency divider using 6th-order RLC resonator, ” Master thesis, National Taiwan University of Science and Technology, 2016.
[45] Yu-Sheng Chen, “Fully-Integrated Wide-Locking Range ÷3 Push-Push Injection-Locked Frequency Divider,” Lot No.T18-99B-81, CIC Tapeout T18-99B, 10 May 2010.
[46] Chia-Nan Hung, “Research of injection-locked frequency dividers and low voltage voltage-controlled-oscillators,” Master thesis, National Taiwan University of Science and Technology, 2009.
[47] Toru Masuda, “A Simplified Distribution Parasitic Capacitance Model for On-Chip Spiral Inductors,” Silicon Monolithic Integrated Circuits in RF Systems, San Diego, CA, USA, 18-20 Jan. 2006.

無法下載圖示 全文公開日期 2022/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE