簡易檢索 / 詳目顯示

研究生: 黃琬雯
Wan-Wen Huang
論文名稱: 高效能螢光鈣鈦礦量子點製備及其應用開發
Development of High-Quantum Yield Perovskite Quantum Dots and its Applications
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 黃志清
Chih-Ching Huang
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 鈣鈦礦量子點發光二極體離子檢測
外文關鍵詞: perovskite quantum dots, LEDs, ion sensing
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本實驗以常溫過飽和再結晶法製備鈣鈦礦量子點,並針對其表面缺陷進行探討及修飾,以提升螢光量子產率(QY)為重點,再利用以優化之鈣鈦礦量子點應用於離子感測及LED元件製備上。本研究主要會分為兩部分進行討論,第一部分會探討鈣鈦礦量子點表面修飾的部分,而第二部分會將此量子點應用於離子感測及LED元件。
  第一部分:本實驗之鈣鈦礦量子點之製備方法不同於以往需於低水氧含量的環境或手套箱中,並以常溫過飽和再結晶法在一般大氣環境下即可成功製備鈣鈦礦量子點,不僅如此,在進行表面缺陷修飾後可大幅提升螢光量子產率(QY)從30.35 %至83.34 %。再經過HR-TEM、XRD、FTIR及PL lifetime等儀器測量優化過之鈣鈦礦量子點的光學性質及表面進行分析,並進行機制探討。
  第二部分:利用已表面修飾過後之鈣鈦礦量子點進行後續應用,第一種應用會先以此量子點於有機溶劑相進行離子感測實驗,確認量子點對離子專一性反應並建立光學變化與待測物濃度間的線性關係,再利用光學儀器並分析確認其機制後,最後利用民生用油進行示範性的銅離子感測實驗。第二種應用是同樣將此優化過之鈣鈦礦量子點與高分子polystyrene混和後,將其鈣鈦礦量子點膠體溶液滴於市售紫外光基板上,再接上電流供應器後可成功製成一綠光LED元件。


  In the present work, we demonstrate a facile supersaturated recrystallization method under room temperature to synthesize perovskite quantum dot (PQD) by using two capping agents, which are oleic acid (OAc) and oleylamine (OAm). This Supersaturated recrystallization method is facile synthesis and cost-effective. In the synthesis process, there is a formation of hydrogen bonds between the protons of the amine group and the Br- ions on the surface. So, this will assist to reduce surface defect formed on the surface and lead to enhanced the quantum yield from 30.35 % to 83.34 %. To understand this enhanced mechanism, we explored and verified through FTIR and XPS spectroscopic methods.
  Furthermore, the superior optical properties of PQDs give promising route to use in different applications. In this work, we demonstrate two different applications, for the ion-sensing and LED device applications. In the former application, using analyte which shows specific binding to the PQD and we proceed for sensitivity quenching experiment in order to get the limit of detection. For the ion sensing application of PQDs, we performed in edible oil and vacuum pump oil for the fast detection of Cu2+ ion. For the second application, this PQDs were used for the LED devices. In this application, mixing a PQD with polystyrene can form a thin film on the commercial ultraviolet chips which successfully show the bright green color by connecting the power supply.

致謝 I 摘要 II Abstract III 總目錄 IV 圖目錄 VI 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 研究動機與內容 2 第二章 文獻回顧 3 2.1 奈米半導體材料的基本特性 3 2.1.1 小尺寸效應(Size Effect) 4 2.1.2 表面效應(Surface Effect) 6 2.1.3 奈米晶體之能隙 6 2.1.4 量子點及量子侷限效應 7 2.2 鈣鈦礦量子點發展與合成 10 2.2.1 量子點之演進 10 2.2.2 鈣鈦礦量子點之演進 12 2.2.3 鈣鈦礦量子點之合成 17 2.2.4 鈣鈦礦量子點之應用 24 2.3 鈣鈦礦量子點應用於金屬離子感測 29 2.3.1 量子點螢光感測相關機制 29 2.3.2 鈣鈦礦量子點離子感測 33 第三章 實驗藥品與方法 39 3.1 實驗藥品 39 3.2 實驗儀器 40 3.3 實驗步驟 41 3.3.1 鈣鈦礦(PQD)量子點合成步驟 41 3.3.2 鈣鈦礦量子點表面缺陷修飾步驟 42 3.4 油相金屬離子感測實驗 42 3.4.1 油相金屬溶液製備 42 3.4.2 金屬離子選擇性測試 43 3.4.3 銅離子靈敏度測試 43 3.4.4 民生用油之銅離子感測 43 3.5 發光二極體元件製備 44 第四章 結果與討論 45 4.1 CsPbBr3鈣鈦礦量子點合成之光學性質及結構分析 45 4.1.1 CsPbBr3鈣鈦礦量子點合成與光學性質探討 46 4.1.2 CsPbBr3鈣鈦礦量子點之材料鑑定 48 4.2 CsPbBr3鈣鈦礦量子點表面缺陷修飾 51 4.2.1 氨水改善CsPbBr3表面缺陷之光學性質及結構分析 52 4.2.2 CsPbBr3鈣鈦礦量子點表面缺陷修飾機制探討 59 4.3 CsPbBr3鈣鈦礦量子點之金屬離子感測應用 70 4.3.1 金屬離子感測 70 4.3.2 銅離子感測機制探討 72 4.3.3 民生用油之銅離子感測 75 4.4 CsPbBr3鈣鈦礦量子點之發光二極體元件應用 77 第五章 結論與未來展望 79 第六章 參考文獻 80

[1] Lövestam, G., Rauscher, H., Roebben, G., Klüttgen, B. S., Gibson, N., Putaud, J. P., & Stamm, H. (2010). Considerations on a definition of nanomaterial for regulatory purposes. Joint Research Centre (JRC) Reference Reports, 80004-1
[2] SCoEaNIHR, E. S., Scientific Basis for the Definition of the Term “nanomaterial”. European Commission, Scientific Committee on Emerging and Newly Identified Health Risks (SCENHR)., 2010
[3] Bleeker, E. A., de Jong, W. H., Geertsma, R. E., Groenewold, M., Heugens, E. H., Koers-Jacquemijns, M., ... & Cassee, F. R., Considerations on the EU definition of a nanomaterial: science to support policy making. Regulatory toxicology and pharmacology, 2013, 65(1), 119-125.
[4] 蕭宏, 半導體製程技術導論, 全華圖書股份有限公司, 2015, 台灣
[5] 張立德等編, 奈米材料和奈米結構, 鼎隆圖書股份有限公司, 2002, 台灣
[6] 賴炤銘, & 李錫隆., 奈米材料的特殊效應與應用.CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI), 2003, 61(4), 585-597.
[7] Kumar, A., Boruah, B. M., & Liang, X. J. (2011). Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. Journal of Nanomaterials, 2011, 22.
[8] 劉吉平、郝向陽,奈米科學與技術,世茂出版社,2002,台灣 (ISBN:957-776-572-6)
[9] Masayuki Fujita. Nature Photonics, 2013, 7, 264-265
[10] Chukwuocha, E. O., Onyeaju, M. C., & Harry, T. S., Theoretical studies on the effect of confinement on quantum dots using the brus equation. World Journal of Condensed Matter Physics, 2012, 2(02), 96.
[11] Wang, Y., & Herron, N., Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties.The Journal of Physical Chemistry, 1991, 95(2), 525-532
[12] Green, M., Solution routes to III–V semiconductor quantum dots.Current Opinion in Solid State and Materials Science, 2002, 6(4), 355-363
[13] 陳學仕,量子點之產業應用與未來發展,工研院產業應用專刊,2004,台灣
[14] Rossetti, R., Nakahara, S., & Brus, L. E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. The Journal of Chemical Physics, 1983, 79(2), 1086-1088.
[15] Murray, C., Norris, D. J., & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19), 8706-8715.
[16] A. Mews, A. Eychmiiller, M. Giersig, D. Schooss, and H. Weller, J. Phys. Chem., 1994, 98, 934
[17] Jr, M. B., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[18] Chan, W. C., & Nie, S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 1998, 281(5385), 2016-2018.
[19] Manna, L., Scher, E. C., & Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society, 2000, 122(51), 12700-12706.
[20] Hines, M. A., & Guyot-Sionnest, P., Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. The Journal of Physical Chemistry, 1996, 100(2), 468-471.
[21] Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., ... & Bawendi, M. G., (CdSe) ZnS core− shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B, 1997, 101(46), 9463-9475.
[22] Allen, P. M., & Bawendi, M. G., Ternary I− III− VI quantum dots luminescent in the red to near-infrared. Journal of the American Chemical Society, 2008, 130(29), 9240-9241.
[23] Deng, D., Qu, L., Zhang, J., Ma, Y., & Gu, Y., Quaternary Zn–Ag–In–Se quantum dots for biomedical optical imaging of RGD-modified micelles. ACS applied materials & interfaces, 2013, 5(21), 10858-10865.
[24] Song, W. S., Kim, J. H., Lee, J. H., Lee, H. S., Do, Y. R., & Yang, H., Synthesis of color-tunable Cu–In–Ga–S solid solution quantum dots with high quantum yields for application to white light-emitting diodes. Journal of Materials Chemistry, 2012, 22(41), 21901-21908.
[25] Yang, D., Cao, M., Zhong, Q., Li, P., Zhang, X., & Zhang, Q., All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7(4), 757-789.
[26] Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., ... & Kovalenko, M. V., Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters, 2015, 15(6), 3692-3696.
[27] Wells, H. L., Über die Cäsium‐und Kalium‐Bleihalogenide. Zeitschrift für anorganische Chemie, 1893, 3(1), 195-210.
[28] Zhang, F., Zhong, H., Chen, C., Wu, X. G., Hu, X., Huang, H., & Dong, Y., Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS nano, 2015, 9(4), 4533-4542.
[29] Li, X., Wu, Y., Zhang, S., Cai, B., Gu, Y., Song, J., & Zeng, H., CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes. Advanced Functional Materials, 2016, 26(15), 2435-2445.
[30] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17), 6050-6051.
[31] Jeon, N. J., Na, H., Jung, E. H., Yang, T. Y., Lee, Y. G., Kim, G., & Seo, J., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3(8), 682.
[32] Sheng, X., Liu, Y., Wang, Y., Li, Y., Wang, X., Wang, X., & Xu, X., Cesium Lead Halide Perovskite Quantum Dots as a Photoluminescence Probe for Metal Ions. Advanced Materials, 2017, 29(37), 1700150.
[33] Liu, Y., Tang, X., Zhu, T., Deng, M., Ikechukwu, I. P., Huang, W., & Qiu, F., All-inorganic CsPbBr 3 perovskite quantum dots as a photoluminescent probe for ultrasensitive Cu 2+ detection. Journal of Materials Chemistry C, 2018, 6(17), 4793-4799.
[34] Lu, L. Q., Ma, M. Y., Tan, T., Tian, X. K., Zhou, Z. X., Yang, C., & Li, Y., Novel dual ligands capped perovskite quantum dots for fluoride detection. Sensors and Actuators B: Chemical, 2018, 270, 291-297.
[35] Lu, L. Q., Tan, T., Tian, X. K., Li, Y., & Deng, P., Visual and sensitive fluorescent sensing for ultratrace mercury ions by perovskite quantum dots. Analytica chimica acta, 2017, 986, 109-114.
[36] Yang, S., Zhang, F., Tai, J., Li, Y., Yang, Y., Wang, H., & Liu, K., A detour strategy for colloidally stable block-copolymer grafted MAPbBr 3 quantum dots in water with long photoluminescence lifetime. Nanoscale, 2018, 10(13), 5820-5826.
[37] Wang, Y., Varadi, L., Trinchi, A., Shen, J., Zhu, Y., Wei, G., & Li, C., Spray‐Assisted Coil–Globule Transition for Scalable Preparation of Water‐Resistant CsPbBr3@ PMMA Perovskite Nanospheres with Application in Live Cell Imaging. Small, 2018, 14(51), 1803156.
[38] Van der Stam, W., Geuchies, J. J., Altantzis, T., Van Den Bos, K. H., Meeldijk, J. D., Van Aert, S., & de Mello Donega, C., Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–x Mx Br3 Perovskite Nanocrystals through Cation Exchange. Journal of the American Chemical Society, 2017, 139(11), 4087-4097.
[39] Jellicoe, T. C., Richter, J. M., Glass, H. F., Tabachnyk, M., Brady, R., Dutton, S. E., & Böhm, M. L., Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9), 2941-2944.
[40] Zhu, J., Yang, X., Zhu, Y., Wang, Y., Cai, J., Shen, J., & Li, C, Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio. The journal of physical chemistry letters, 2017, 8(17), 4167-4171.
[41] Liu, H., Wu, Z., Shao, J., Yao, D., Gao, H., Liu, Y., .& Yang, B., CsPbx Mn1–x Cl3 Perovskite Quantum Dots with High Mn Substitution Ratio. ACS nano, 2017, 11(2), 2239-2247.
[42] Yang, B., Chen, J., Yang, S., Hong, F., Sun, L., Han, P., & Han, K., Lead‐Free Silver‐Bismuth Halide Double Perovskite Nanocrystals. Angewandte Chemie, 2018, 130(19), 5457-5461.
[43] Yang, B., Mao, X., Hong, F., Meng, W., Tang, Y., Xia, X., & Han, K., Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission. Journal of the American Chemical Society, 2018, 140(49), 17001-17006.
[44] Nandha, N., & Nag, A., Synthesis and luminescence of Mn-doped Cs2 AgInCl6 double perovskites. Chemical Communications, 2018, 54(41), 5205-5208.
[45] MØLLER, C. K., Crystal structure and photoconductivity of caesium plumbohalides. Nature, 1958, 182(4647), 1436.
[46] Fang, F., Chen, W., Li, Y., Liu, H., Mei, M., Zhang, R., & Wang, K.,. Employing polar solvent controlled ionization in precursors for synthesis of high‐quality inorganic perovskite nanocrystals at room temperature. Advanced Functional Materials, 2018, 28(10), 1706000.
[47] Shamsi, J., Urban, A. S., Imran, M., De Trizio, L., & Manna, L., Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chemical reviews., 2019
[48] Akkerman, Q. A., Park, S., Radicchi, E., Nunzi, F., Mosconi, E., De Angelis, F., ... & Manna, L., Nearly monodisperse insulator Cs4PbX6 (X= Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals. Nano letters, 2017, 17(3), 1924-1930.
[49] Wei, W., & Hu, Y. H., Catalytic role of H2O in degradation of inorganic–organic perovskite (CH3NH3PbI3) in air, International Journal of Energy Research, 2017, 41(7), 1063-1069.
[50] Lignos, I., Stavrakis, S., Nedelcu, G., Protesescu, L., deMello, A. J., & Kovalenko, M. V., Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano letters, 2016, 16(3), 1869-1877.
[51] Hou, S., Guo, Y., Tang, Y., & Quan, Q., Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles. ACS applied materials & interfaces, 2017, 9(22), 18417-18422.
[52] Koscher, B. A., Swabeck, J. K., Bronstein, N. D., & Alivisatos, A. P., Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. Journal of the American Chemical Society, 2017, 139(19), 6566-6569.
[53] Li, G., Rivarola, F. W. R., Davis, N. J., Bai, S., Jellicoe, T. C., de la Peña, F., & Greenham, N. C,. Highly efficient perovskite nanocrystal light‐emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18), 3528-3534.
[54] Tan, G., Zhu, R., Tsai, Y. S., Lee, K. C., Luo, Z., Lee, Y. Z., & Wu, S. T., High ambient contrast ratio OLED and QLED without a circular polarizer. Journal of Physics D: Applied Physics, 2016, 49(31), 315101.
[55] Song, J., Li, J., Li, X., Xu, L., Dong, Y., & Zeng, H., Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced materials, 2015, 27(44), 7162-7167.
[56] Song, J., Fang, T., Li, J., Xu, L., Zhang, F., Han, B., & Zeng, H., Organic–inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Advanced Materials, 2018, 30(50), 1805409.
[57] Zhang, X., Bai, X., Wu, H., Zhang, X., Sun, C., Zhang, Y., & Rogach, A. L., Water‐Assisted Size and Shape Control of CsPbBr3 Perovskite Nanocrystals. Angewandte Chemie International Edition, 2018, 57(13), 3337-3342.
[58] Li, P. N., Ghule, A. V., & Chang, J. Y., Direct aqueous synthesis of quantum dots for high-performance AgInSe2 quantum-dot-sensitized solar cell. Journal of Power Sources, 2017, 354, 100-107.
[59] Chang, C. C., Chen, J. K., Chen, C. P., Yang, C. H., & Chang, J. Y., Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach. ACS applied materials & interfaces, 2013, 5(21), 11296-11306.
[60] Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83(12), 2213-2228.
[61] Akbali, B., Topcu, G., Guner, T., Ozcan, M., Demir, M. M., & Sahin, H., Cspbbr3 perovskites: Theoretical and experimental investigation on water-assisted transition from nanowire formation to degradation. Physical Review Materials, 2018, 2(3), 034601.
[62] Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17), 6050-6051.
[63] Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., & Grätzel, M., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012, 2, 591.
[64] Christians, J. A., Schulz, P., Tinkham, J. S., Schloemer, T. H., Harvey, S. P., de Villers, B. J. T., & Luther, J. M., Tailored interfaces of unencapsulated perovskite solar cells for> 1,000 hour operational stability. Nature Energy, 2018, 3(1), 68.
[65] Yang, W. S., Park, B. W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., & Seok, S. I., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376-1379.
[66] Hughes, L. D., Rawle, R. J., & Boxer, S. G., Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PloS one, 2014, 9(2), e87649.
[67] Lai, P. Y., Huang, C. C., Chou, T. H., Ou, K. L., & Chang, J. Y., Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging. Acta biomaterialia, 2017, 50, 522-533.
[68] Zhang, H., Wang, X., Liao, Q., Xu, Z., Li, H., Zheng, L., & Fu, H., Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7), 1604382.
[69] Kousar, S., & Javed, M. Evaluation of acute toxicity of copper to four fresh water fish species. International journal of agriculture and biology, 2012, 14(5).
[70] Satarug, S., & Moore, M. R., Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environmental health perspectives, 2004, 112(10), 1099-1103.
[71] Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D., Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 2003, 192(2-3), 95-117.
[72] Gutknecht, J., Inorganic mercury (Hg2+) transport through lipid bilayer membranes. The Journal of Membrane Biology, 1981, 61(1), 61-66.
[73] Tchounwou, P. B., Ayensu, W. K., Ninashvili, N., & Sutton, D., Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental Toxicology: An International Journal, 2003, 18(3), 149-175.
[74] Yan, B., & Worsfold, P. J., Determination of cobalt (II), copper (II) and iron (II) by ion chromatography with chemiluminescence detection. Analytica Chimica Acta, 1990, 236, 287-292.
[75] Minami, T., Atsumi, K., & Ueda, J., Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide. Analytical sciences, 2003, 19(2), 313-315.
[76] Hutton, E. A., van Elteren, J. T., Ogorevc, B., & Smyth, M. R., Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta, 2004, 63(4), 849-855.
[77] Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N., & Chen, L. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors and Actuators B: Chemical, 2014, 192, 488-495.
[78] Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., & Sun, X., Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury (II) ions. Analytical chemistry, 2012, 84(12), 5351-5357.
[79] Saleem, M., & Lee, K. H., Selective fluorescence detection of Cu2+ in aqueous solution and living cells. Journal of Luminescence, 2014, 145, 843-848.
[80] Wu, P., Zhao, T., Wang, S., & Hou, X., Semicondutor quantum dots-based metal ion probes. Nanoscale, 2014, 6(1), 43-64.
[81] Silvi, S., & Credi, A., Luminescent sensors based on quantum dot–molecule conjugates. Chemical Society Reviews, 2015, 44(13), 4275-4289.
[82] Liu, S., Li, Y., & Su, X., Determination of copper (II) and cadmium (II) based on ternary CuInS2 quantum dots. Analytical Methods, 2012, 4(5), 1365-1370.
[83] Xu, H., Wang, Z., Li, Y., Ma, S., Hu, P., & Zhong, X., A quantum dot-based “off–on” fluorescent probe for biological detection of zinc ions. Analyst, 2013, 138(7), 2181-2191.
[84] Liu, Z., Li, G., Ma, Q., Liu, L., & Su, X., A near-infrared turn-on fluorescent nanosensor for zinc (II) based on CuInS2 quantum dots modified with 8-aminoquinoline. Microchimica Acta, 2014, 181(11-12), 1385-1391.
[85] Wang, X., & Guo, X., Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst, 2009, 134(7), 1348-1354.
[86] Martin, A. R., & Hermann, R. N., Action of Copper Salts on Emulsions Stabilized by Sodium Oleate. Nature, 1939, 144(3645), 479.
[87] H. Wayne Richardson, handbook of copper compounds and applications, Marcel Dekker,Inc., 1997
[88] De Roo, J., Ibáñez, M., Geiregat, P., Nedelcu, G., Walravens, W., Maes, J., & Hens, Z., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS nano, 2016, 10(2), 2071-2081.
[89] Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., & Grätzel, M., Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nature chemistry, 2015, 7(9), 703.
[90] Yang, D., Li, X., & Zeng, H., Surface chemistry of all inorganic halide perovskite nanocrystals: passivation mechanism and stability. Advanced Materials Interfaces, 2018, 5(8), 1701662.
[91] Ravi, V. K., Santra, P. K., Joshi, N., Chugh, J., Singh, S. K., Rensmo, H., & Nag, A., Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. The journal of physical chemistry letters, 2017, 8(20), 4988-4994.
[92] Liu, Z., Zhang, Y., Fan, Y., Chen, Z., Tang, Z., Zhao, J., & Liu, X., Toward highly luminescent and stabilized silica-coated perovskite quantum dots through simply mixing and stirring under room temperature in air. ACS applied materials & interfaces, 2018, 10(15), 13053-13061.
[93] González-Pedro, V., Veldhuis, S. A., Begum, R., Bañuls, M. J., Bruno, A., Mathews, N., & Maquieira, A., Recovery of Shallow Charge-Trapping Defects in CsPbX3 Nanocrystals through Specific Binding and Encapsulation with Amino-Functionalized Silanes. ACS Energy Letters, 2018, 3(6), 1409-1414.
[94] Kim, Y., Yassitepe, E., Voznyy, O., Comin, R., Walters, G., Gong, X., & Sargent, E. H., Efficient luminescence from perovskite quantum dot solids. ACS applied materials & interfaces, 2015, 7(45), 25007-25013.
[95] Luo, B., Pu, Y. C., Lindley, S. A., Yang, Y., Lu, L., Li, Y., & Zhang, J. Z., Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angewandte Chemie International Edition, 2016, 55(31), 8864-8868.
[96] Zhao, J., Cao, S., Li, Z., & Ma, N., Amino Acid-Mediated Synthesis of CsPbBr3 Perovskite Nanoplatelets with Tunable Thickness and Optical Properties. Chemistry of Materials, 2018, 30(19), 6737-6743.
[97] Mei, J., Wang, F., Wang, Y., Tian, C., Liu, H., & Zhao, D., Energy transfer assisted solvent effects on CsPbBr3 quantum dots. Journal of Materials Chemistry C, 2017, 5(42), 11076-11082.
[98] Park, D. H., Han, J. S., Kim, W., & Jang, H. S., Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes and Pigments, 2018, 149, 246-252.
[99] Wei, Y., Deng, X., Xie, Z., Cai, X., Liang, S., Ma, P. A., & Lin, J., Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling–shrinking strategy toward superior water resistance. Advanced Functional Materials, 2017, 27(39), 1703535.
[100] Debije, M. G., & Verbunt, P. P., Thirty years of luminescent solar concentrator research: solar energy for the built environment. Advanced Energy Materials, 2012, 2(1), 12-35.
[101] Zhao, Y., & Zhu, K., Optical bleaching of perovskite (CH3 NH3) PbI3 through room-temperature phase transformation induced by ammonia. Chemical Communications, 2014, 50(13), 1605-1607.
[102] Cheng, Y. K., & Cheng, K. W. E., General study for using LED to replace traditional lighting devices. In 2006 2nd International Conference on Power Electronics Systems and Applications , IEEE., 2006, 173-177,
[103] Preda, N., Mihut, L., Baibarac, M., Baltog, I., Ramer, R., Pandele, J., & Fruth, V., Films and crystalline powder of PbI2 intercalated with ammonia and pyridine. Journal of Materials Science: Materials in Electronics, 2009, 20(1), 465-470.
[104] Lin, C. C., & Liu, R. S., Introduction to the basic properties of luminescent materials. In Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications (pp. 1-29). Springer, 2017, Berlin, Heidelberg.

無法下載圖示 全文公開日期 2024/08/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE