簡易檢索 / 詳目顯示

研究生: Wikan Jatimurti
Wikan - Jatimurti
論文名稱: Cold Crystallization Effects on Mechanical Properties and Morphology of Poly (L-Lactic Acid) Film
Cold Crystallization Effects on Mechanical Properties and Morphology of Poly (L-Lactic Acid) Film
指導教授: 洪伯達
Po-Da Hong
口試委員: Tong-Jing Fang
Tong-Jing Fang
白孟宜
Meng-Yi Bai
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 44
中文關鍵詞: PLLA filmsCold CrystallizationMechanical PropertiesMorphology
外文關鍵詞: PLLA films, Cold Crystallization, Mechanical Properties, Morphology
相關次數: 點閱:227下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Effect of the crystallinity on the mechanical behavior of poly (L-Lactic acid) (PLLA) have been investigated by means of microhardness, tensile, dynamical mechanical analysis (DMA). The crystallization kinetic of time and temperature effect was studied by Fourier Transform Infrared Spectroscopy (FTIR). The formation of 103 helix structure, which is attributed to the α form crystal of PLLA, was measured to calculate the Avrami parameters. From differential scanning calorimetric (DSC) and X-Ray Difraction (XRD) results, it indicated that the crystallinity increased with increasing crystallized temperature (90 0C to 120 0C for 24hr). Moreover, microhardness increasement has been observed for different crystallization temperatures, which is correlated with the development of crystallinity. Tensile test revealed that the crystallinity constrained the amorphous chain in the cold crystallization system. The strain of PLLA decreases gradually with increasing crystallization temperature. DMA curves exhibit the different viscous and elastic properties, showed that the sample can absorb the energy. Samples with higher crystallinity showed low tan delta result, represented that the sample are stiff, brittle and less viscous ability. In this study, we connect the relationship between crystallinity and mechanical properties of PLLA films. And we have found the crystallization temperature will affect the crystallinity of sample.


Effect of the crystallinity on the mechanical behavior of poly (L-Lactic acid) (PLLA) have been investigated by means of microhardness, tensile, dynamical mechanical analysis (DMA). The crystallization kinetic of time and temperature effect was studied by Fourier Transform Infrared Spectroscopy (FTIR). The formation of 103 helix structure, which is attributed to the α form crystal of PLLA, was measured to calculate the Avrami parameters. From differential scanning calorimetric (DSC) and X-Ray Difraction (XRD) results, it indicated that the crystallinity increased with increasing crystallized temperature (90 0C to 120 0C for 24hr). Moreover, microhardness increasement has been observed for different crystallization temperatures, which is correlated with the development of crystallinity. Tensile test revealed that the crystallinity constrained the amorphous chain in the cold crystallization system. The strain of PLLA decreases gradually with increasing crystallization temperature. DMA curves exhibit the different viscous and elastic properties, showed that the sample can absorb the energy. Samples with higher crystallinity showed low tan delta result, represented that the sample are stiff, brittle and less viscous ability. In this study, we connect the relationship between crystallinity and mechanical properties of PLLA films. And we have found the crystallization temperature will affect the crystallinity of sample.

ABSTRACTi ACKNOWLEDGMENTSii CONTENTiii LIST OF FIGURESv LIST OF TABLESvii SYMBOLS TABLE FOR THE THESISviii CHAPTER 11 INTRODUCTION1 1.1Mechanical Properties of Polymer1 1.2Crystalline Polymer5 1.3Physical Properties of PLLA6 1.4Cold Crystallization7 CHAPTER 29 EXPERIMENTAL METHOD9 2.1Experimental Flow Chart9 2.2Experimental Methods10 2.2.1Materials10 2.2.2Sample Preparation10 2.3Experimental Instrument11 2.3.1Fourier Transform Infrared Spectrometry (FTIR)11 2.3.2Wide-Angle X-Ray Diffraction (XRD)11 2.3.3Differential Scanning Calorimetry (DSC)12 2.3.4Hardness Examination13 2.3.5Tensile Examination14 2.3.6Dynamical Mechanical Analysis (DMA)15 2.3.7Scanning Electron Microscopy17 CHAPTER 318 RESULT AND DISCUSSION18 3.1Formation of 103 Structure during Crystallization.18 3.2Crystal Structure of Cold-Crystallized PLLA Film22 3.3Thermal Behavior of Cold Crystallized PLLA Film23 3.4Mechanical Properties of Cold-Crystallized PLLA Film27 3.5Morphology of SEM Micrograph of the Fracture Surface of Cold Crystallized PLLA Films33 CHAPTER 434 CONCLUSION34 REFERENCES35

1.Coleman, N.M., Mechanical and Rheological Properties of Polymers. 1999.
2.Nielsen, L.E.L.R.F., Mechanical properties of polymers and composites, ed. Dekker1994, Newyork.
3.Roylance, D., STRESS-STRAIN CURVES. 2001.
4.Sperling, L.H., Front Matter, in Introduction to Physical Polymer Science 2005, John Wiley & Sons, Inc. p. i-xxx.
5.Tsuji, H.T., H.; Saha, S. K, Polymer. 2006. 47, 3826-3837.
6.Struik, L.C.E., polymers. 28,1521.1987.28.1521
7.Lim, L.T., R. Auras, and M. Rubino, Processing technologies for poly(lactic acid). Progress in Polymer Science,2008. 33, 820-852
8.Li Shen, J.H., Martin K. Patel, Product overview and market projection of emerging bio- based plastics, June 2009.
9.Di Lorenzo, M.L., Macromolecular Symposia, :.2006. 234, 176-183
10.G. Zhang, Z.J., W. Shenguo, S. , Deyan, and 23-30, Journal of polymer science: Part B: Polymer Physics, 2003.
11.Soedagard, A.S., M, , Prog. Polym. Sci. 2002. 27, 1123
12.Di Lorenzo, M.L. European Polymer Journal, 2005. 41, 569-575
13.Turner, J., et al., Journal of Thermal Analysis and Calorimetry, 2004. 257,268
14.Di Lorenzo, M.L., Polymer, 2001. 42,941
15.Abe, H.K., Y.; Inoue, Y.; Doi, Y. Biomacromolecules, 2004. 2,1007
16.Wasanasuk, K. and K. Tashiro, Macromolecules, 2011. 9650,9660
17.Kobayashi, J.A., T.; Ichiki, M.; Okikawa, A.; Suzuki, H.; Watanabe, T.; Fukuda, E.; Shikinami, Y.,, J. Apply Phys., 1995. 77, 2957.
18.Puiggali, J.I., Y.: Tsuji, H.; Cartier, L; Okihara, T.; Lotz, B, Polymer, 2000. 41, 8921
19.Cartier, L.O., T.; Ikada, Y.; Tsuji.; H.; Puiggali, J.; Lotz, B. , Polymer, 2000. 41, 8921.
20.Kister, G.C., G.; Vert, M. , Polymer. 1998. 39, 267.
21.Lee, J.K.L., K. H.; Jin, B. S. . Eur. Polym. J. 2001. 37, 907.
22.Zhang J, T.H., Noda I, Ozaki Y., J. Phys Chem B, 2004. 20, 11514
23.Pan P, L.Z., Zhu B, Dong T, Inoue Y, Macromolecules. 2006. 20, 11514
24.Zhang, J., et al., Macromolecules, 2005. 38, 8012-8021
25.Avrami, M., J. Chem. Phys, 1940. 8,212
26.Sawai, D.T., K.; Sasashige, A.; Kanamoto, T. and . Macromolecules. 2003. 36, 3601.
27.Mano, J.F., et al., Macromolecular Materials and Engineering, 2004. 289, 910-915
28.al, K.A.M.e., European Polymer Journal, 2005. 1410–1419
29.Meyer, W.H., Polymer physics. by Ulf W. Gedde, Chapman & Hall, London 1995, x, 298 pp., softcover, £69.00, ISBN 0-412-62640-3. Advanced Materials, 1996. 8, 863-864.
30.Yasuniwa, M.S.K.O., Y.; kawahara. W., Polymer, 2008. 49, 1943,.
31.Liu, T.P.J. Polymer, 2001. 42, 6453
32.Rahman, N., et al., Macromolecules, 2009. 42, 4739-4745.
33.Kong, Y. and J.N. Hay, Polymer, 2002. 43, 3873-3878
34.Tsuji, H.I.Y., Polymer, 1995. 36, 2709
35.Calleja, F.J.B. and S. Fakirov, Microhardness of Polymers,2007.
36.Wang, X.D.M., N. S; Mabrey, J. D.; Alder, M. E.; Agrawal, C.M, Bone. 1998. 23, 67
37.fini, M.G., G; Greggi, T.; Martin, L.; Aldini, N. N.; parisini, P.; Giardino, R., J. Biomed mater Res, 2003. 66A, 176.
38.Annette, C.G., R.; Roseb, J.; Farrarb, D. F.; Camerona, R. E Biomaterials, 2005. 26, 5771.
39.A, P., Polym. Eng. Sci., 1965. 9, 61
40.D.M. Bigg, ANTEC Technical papers, 1996. 2033
41.C.H. Turner, Bone,1993, 14, 596.
42.Menard, Kevin P, Dynamic Mechanic Analysis:A Practical Introduction. 1999
43.M.E. Khosroshahi., M.Mahmoodi.,J.Tavakoli, Biomedical, 2007, 253, 8772

QR CODE