簡易檢索 / 詳目顯示

研究生: 余俊宏
Chun-hung Yu
論文名稱: 生醫玻片影像掃描系統之研究
A Study of the Biomedical Slide Scanning System
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 王世仁
none
邱奕契
none
鄧昭瑞
Geo-Ry Tang
鍾國亮
Kuo-Liang Chung
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 影像縫合自動對焦生醫組織玻片顯微鏡運動控制影像處理虛擬玻片
外文關鍵詞: virtual slide, image processing, motion control, autofocusing, image stitching, tissue slide, microsope
相關次數: 點閱:616下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫病理的相關研究為現代醫學中重要的技術,從植物組織、動物組織、人體組織或是一些特殊的應用,許多應用都必須靠生醫組織玻片來觀察。早期此項技術都是由傳統的顯微鏡來做病理,或其它特殊研究的觀察,由於醫學研究發展迅速,醫療體系已朝向追求快速、方便、衛生及安全的需求。生醫組織玻片的掃描技術為將一實體的組織玻片,透過顯微影像系統的擷取,轉換成一個全景數位影像的虛擬玻片,進而能在電腦上完成更多的工作。本研究中以組織玻片與薄層細胞抹片(如子宮頸抹片)為例,探討生醫組織玻片掃描設備的顯微影像自動對焦與全景影像縫合等方法,以跨領域方式整合光機電與生物醫學等關鍵性技術,開發生醫組織玻片的掃描雛型設備。


    The biomedical pathology is a significant technique in modern medicine, many cell functions must rely on biomedical slides to be observed such as plant tissue, animal tissue, and human tissue. This technique was manipulated with traditional microscope in the past. As the rapid development of medical research, medical system has been tending to pursue quicker, easier, healthier and safer techniques. Biomedical slide scanning technology can convert the slide into a digital panoramic virtual image through the image acquiring systems, which let us be able to do more work on the computer. In this study, we take tissue slice and thin layer cytological smear (Pap smear) as an example to investigate the methods of the autofocusing and panorama stitching, and to development of a prototype biomedical slide scanning system.

    摘要i Abstractii 誌謝iii 目錄iv 圖索引vii 表索引xi 符號表xii 第一章、緒論1 1.1 研究背景與目的1 1.2 病理醫學的發展2 1.3 文獻探討2 1.4 研究方法與論文架構3 第二章、生醫組織玻片基本概念與掃描設備之組成5 2.1 生醫組織玻片種類介紹5 2.2 虛擬玻片之應用7 2.2.1 臨床病理診斷7 2.2.2 遠距病理資訊傳輸8 2.2.3 生醫病理教學8 2.3市售機台優劣評估10 2.4 生醫組織玻片掃描雛型機台組成11 2.4.1 運動控制模組11 2.4.2 影像擷取模組14 2.4.3 系統動作流程17 2.5 雛型機台與軟體操作介面20 第三章、玻片掃描系統校正21 3.1 線掃描攝影機校正21 3.2 線掃描攝影機與面掃描攝影機對焦平面校準25 3.3 影像與運動座標位置校正與轉換27 3.4 影像背景雜訊濾除30 第四章、生醫組織玻片自動對焦34 4.1 複合式自動對焦方法35 4.2 面掃描攝影機對焦方法36 4.2.1 對焦準則銳利度函數評估36 4.2.2 對焦準清晰度曲線與對焦搜尋間隔之關係48 4.2.3 焦點近似演算法49 4.3 全行程自動對焦52 4.3.1 對焦範圍判別53 4.3.2 對焦導引曲線54 4.4 全景深影像融合56 4.4.1 影像特徵對齊56 4.4.2 Fusion map57 4.4.3 融合法則58 第五章、全景生醫組織玻片影像製作61 5.1 生醫組織玻片影像縫合方法評估62 5.2 影像疊合63 5.2.1 特徵點定義65 5.2.2 特徵比對66 5.3 影像縫合方法67 5.3.1 最小邊界誤差切割68 5.3.2 最小邊界誤差切割線路徑規劃71 5.3.3 混合式最小邊界誤差切割線73 5.4 新式最小邊界誤差切割方法75 5.4.1 對角最小邊界誤差切割75 5.4.2 新式混合最小邊界誤差切割78 5.5 色彩平衡80 5.5.1 數位影像色彩空間80 第六章、實驗結果與討論86 6.1 單點自動對焦結果86 6.1.1 自動對焦重現性分析86 6.1.2 自動對焦可靠度分析87 6.1.3 焦點近似演算結果88 6.2 複合式自動對焦實驗89 6.3 全景生醫影像製作結果94 第七章、結論與未來展望98 參考文獻100 附錄A 玻片掃描系統規格表103 附錄B SMAC音圈馬達規格表104 附錄C XRV V76-70音圈馬達規格表105 附錄D NI PCI-7344運動控制卡規格表106 附錄E Basler L304kc規格表107 附錄F NI PCI-1429影像擷取卡規格表108

    [1]Katharina, G. K., Dieter, G. and Michael, J. M., “Virtual Slide: High-quality demand, physical limitations, and affordability,” Human Pathology, Vol. 34, pp. 968-974 (2003)
    [2]Treanor, D., “Virtual slides: an introduction,” Diagnostic Histopathology, Vol. 15, No. 2, pp. 99-103 (2009)
    [3]Huisman, A., Looijen, A., Steven, M. and Paul, J., “Creation of a fully digital pathology slide archive by high-volume tissue slide scanning,” Human Pathology, Vol. 41, pp. 751-757 (2010)
    [4]黃閔照、陳鴻生,「子宮頸抹片篩檢輔助技術之新進展」,台灣醫學,第5券,第2期(2001)。
    [5]台灣儀器行,MIRAX SCAN規格,http://www.ticgroup.com.tw/menu/news_center/ new_products/Mirax/mirax.asp(2010)
    [6]元利儀器,DotSlide規格,http://www.yuanyu.com.tw/yuanli/Products3_6.asp? Unique_ID=45(2010)
    [7]Aperio, “Precise motion control contributes to virtual microscopy slide scanner,” Medical Design Technology, Vol. 10, No. 5, pp. 31-32 (2006)
    [8]Firestone, L., Cook, K., Gulp, K., Talsania, N. and Preston, K. J., “Comparison of autofocus methods for automated microscopy,” Cytometry, Vol. 12, pp. 195-206 (1991)
    [9]丘前恕,「顯微照像的快速自動對焦技術」,碩士論文,國立中央大學,桃園 (2008)。
    [10]Yeo, T. T. E., Ong, S. H., Jayasooriah, and Sinniah, R., “Autofocusing for tissue microscopy,” Image and Vision Computing, Vol. 11 No. 10 pp. 629-639 (1993)
    [11]Mea, V. D., Viel, F. and Beltrami, C. A., “A pixel-based autofocusing technique for digital histologic and cytologic slides,” Computerized Medical Imaging and Graphics, Vol. 29, pp. 333-341 (2005)
    [12]Li, H., Manjunath, B. S. and Mitra, S. K., “Multisensor image fusion using the wavelet transform,” Graphical Models and Image Processing, Vol. 57, No. 3, pp. 235-245 (1994)
    [13]Forster, B., Van, D. V. D., Berent, J., Sage, D. and Unser, M., “Complex wavelets for extended depth of field: A new method for the fusion of multichannel microscopy images,” Microscopy Research and Technique, Vol. 65, pp. 33-42 (2004)
    [14]Chen, C. Y., “Image stitching comparisons and new techniques,” Computer Science Department of the University of Auckland, (1998)
    [15]Kim, D. H., Yoon, Y. I., and Choi, J. S., “An efficient method to build panoramic image mosaics,” Pattern Recognition Letters, Vol. 24, pp. 2421-2429 (2003)
    [16]Zomet, A., Levin, A., Peleg, S., and Weiss, Y., “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Processing, Vol. No. pp. (2006)
    [17]Efros, A. A., and Freeman, W. T., “Image quilting for texture synthesis and transfer,” International Conference on Computer Graphics and Interactive Techniques, pp.341-346, (2001)
    [18]廖子揚,「影像縫合技術及其應用」,碩士論文,國立交通大學,新竹 (2008)。
    [19]Soenksen, D. G., “Fully automatic rapid microscope slide scanner,” US Patent, 6711283, 2004.
    [20]Grandall, G. J., “System and method for data management in a linear-array-based microscope slide scanner,” US Patent, 7428324, 2008.
    [21]Eguíluz, C., Viguera, E., Millán, L. and Pérez, J., “Multitissue array review: A chronological description of tissue array techniques, applications and procedures,” Pathology-Research and Practice, Vol. 202, pp.561-568 (2003)
    [22]許為捷,「組織陣列全自動化設備設計與研製」,碩士論文,國立台灣科技大學,台北 (2009)。
    [23]台北榮民總醫院婦產科,子宮頸抹片製作,http://wd.vghtpe.gov.tw/obgy/site. jsp?id=2347(2010)
    [24]Song, L. H., Goh, E. S. T., Phang, L. C., Poh, W. T., Tay, S. K., “Technical aspect of ThinPrep,” Singapore Med, Vol. 12, pp. 575-578 (2000)
    [25]Kuo, W. M., Chuang, S. F., Nian, C. Y., Tarng, Y. S., “Precision nano-alignment system using machine vision with motion controlled by piezoelectric motor,” Mechatronics, Vol. 18, pp. 21-34 (2008)
    [26]Nain, C. Y., Trang, Y. S., “An auto-alignment vision system with three-axis motion control mechanism,” International of Advanced Manufacturing Technology, Vol. 26, pp. 1121-1131 (2005)
    [27]Gonzalez, R. C. and Woods, R. E., Digital image processing, Prentice Hall Second Edition, pp.75-141 (2002)
    [28]Strang, G., “The discrete cosine transform,” SIAM Review, Vol. 41, pp. 135-147 (1999)
    [29]鐘國亮,影像處理與電腦視覺,東華書局,台北,第96-102頁 (2006)。
    [30]Santos, A., Solorazno, O. D.,Vaouero J. J., Pena J. M., Malpica N. and Pozo D., “Evaluation of autofocus funtions in molecular cytogenetic analysis,” Journal of Microscopy, Vol. 188, pp. 246-272 (1997)
    [31]Vollath, D., “The influence of the scene parameters and of noise on the behaviour of automatic focusing algorithms,” Journal of Microscopy, Vol. 151, 133-146 (1988)
    [32]He, J., Zhou, R., and Hong, Z., “Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera,” IEEE Trans. on Consumer Electronics, Vol. 49, pp. 257-262 (2003)
    [33]洪明勝,「掃描攝影機開發生物組織玻片掃描設備之研製」,碩士論文,國立台灣科技大學,台北 (2010)。
    [34]Liao, C. W., Yu, J. H., Tarng, Y. S., “On-line full scan inspection of particle size and shape using digital image processing,” Particuology, Vol. 8, No. 3, pp. 286-292, (2010)
    [35]Zhang, Z. and Blum, R. S., “A categorization of multiscale-decomposition based image fusion schemes with a performance study for a digital camera application,” Proceedings of the IEEE, Vol. 87, pp. 1315-1326 (1999)
    [36]Yoo, J. C., Han, T. H., “Fast normalized cross-correlation,” Circuits Syst Signal Process, Vol. 28 pp. 819-843 (2009)
    [37]廖彥法,「立體影像於物件幾何重建之研究」,碩士論文,國立成功大學,台南 (2005)。

    QR CODE