簡易檢索 / 詳目顯示

研究生: 簡豪正
Hao-Cheng Chien
論文名稱: 高缺陷密度氧化物中空球之開發與應用研究
Synthesis and application of oxide hollow spheres with high defect density
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 郭東昊
Dong-Hau Kuo
駱芳鈺
Fang-Yuh Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 二氧化鈰披覆碳高缺陷密度磁性
外文關鍵詞: C@CeO2, high defect density, magnetism
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目的有二,第一是調整次微米級二氧化鈰中空球的缺陷分布,第二是探討此種結構的物理特性。在缺陷分布的控制上,利用與檸檬酸進行水熱反應,在其上形成碳膜以及在殼層中形成碳摻雜。由X光繞射分析(XRD)、穿透式電子顯微鏡(TEM)、顯微拉曼光譜儀(Raman)以及X光吸收光譜(XAS)的分析結果指出當反應時間高於4小時,除了在中空球表面觀察到有非晶碳層形成,在殼層內部亦發現碳取代氧反應深度可達5nm,此種取代形成電荷轉移,使Ce3+的含量由7%上升至高達50%。
在磁性分析上,經由水熱法改質的二氧化鈰中空球於室溫下之鐵磁性皆比原始中空球高,飽和磁化量的提升可達5倍。結合結構分析可推測在中空球結構中將缺陷層的厚度增加對磁性的提升並沒有明顯的幫助,磁性形成的關鍵仍在於中空球的表層。
最後以循環伏安法量測CeO2(A)以及C@CeO2(A)-5hrs的電化學性質,實驗結果皆沒有出現氧化還原峰,利用CV曲線換算比電容發現兩樣品的數值並沒有明顯差異且與文獻相比皆較差,推測原因在於碳取代殼層表層的氧之缺陷無法為電化學性質帶來提升。


The purpose of this research is twofold. The first is to adjust the defect distribution of sub-micron ceria hollow spheres, and the second is to explore the physical properties of this structure. In the control of defect distribution, the hydrothermal reaction with citric acid is used to form a carbon film thereon and a carbon dopant in the shell layer. The analysis results of X-ray diffraction analysis (XRD), transmission electron microscope (TEM), Micro-Raman spectrometer (Raman), and X-ray absorption spectroscopy (XAS) indicate that the reaction time is higher than 4 hours, except in hollow spheres. A carbon layer is formed on the surface, and the carbon simultaneously replaces the oxygen with a thickness of 5nm on the surface of the shell layer to form a charge transfer, which increases the content of Ce3+ from 7% to as high as 50%.
In terms of magnetic analysis, the room temperature ferromagnetism of the ceria hollow spheres modified by the hydrothermal method is higher than that of the original hollow spheres, and the saturation magnetization can be increased by up to 5 times. Combined with structural analysis, it can be inferred that expanding the distribution range of defects in the hollow sphere structure cannot effectively improve the magnetic properties, and the key lies in the surface.
Finally, the electrochemical properties of CeO2(A) and C@CeO2(A)-5hrs were measured by cyclic voltammetry. The experimental results showed no redox peaks. Using the CV curve to convert the specific capacitance, it was found that the values of the two samples were not significantly different. After comparing with the literature, they were inferior. It is speculated that the reason is that the defects of the carbon-substituted shell in the surface layer cannot improve the electrochemical properties.

摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1稀磁性半導體 4 2.1.1 稀磁性半導體簡介 4 2.1.2 稀磁性半導體機制 5 2.1.3 稀磁性半導體材料 6 2.2 二氧化鈰性質及研究背景 11 2.2.1 二氧化鈰之晶體結構 12 2.2.2 二氧化鈰之化學性質 13 2.2.3 二氧化鈰之缺陷及磁性研究 14 2.3 碳的性質及應用 23 2.3.1 碳的介紹 23 2.3.2 非晶碳之鐵磁性 24 2.3.3 碳與二氧化鈰之界面反應 27 2.3.4 碳-二氧化鈰複合材料之電化學性能 30 第三章 實驗流程與分析技術 33 3.1 材料製備方式 34 3.1.1 二氧化鈰中空球製備 34 3.1.2非晶碳層包覆二氧化鈰中空球之製備 36 3.2 結構分析 38 3.2.1 X光繞射分析 (X-ray Diffraction, XRD) 38 3.2.2 掃描式電子顯微鏡 39 3.2.3 穿透式電子顯微鏡 41 3.2.4 傅立葉轉換紅外線光譜儀 43 3.2.5 X光吸收光譜 44 3.2.6 拉曼散射分析儀 50 3.3 性能分析 51 3.3.1 振動樣品磁力分析儀 51 3.3.2 電化學活性量測 52 第四章 結果與討論 54 4.1 在二氧化鈰中空球上進行碳披覆 54 4.1.1 XRD分析 54 4.1.2 TEM分析 56 4.1.3 Raman分析 59 4.1.4 X光吸收光譜分析 63 4.1.5 TEM (Cross-section)及EDS Mapping分析 72 4.1.6 綜合討論 76 4.2 磁性分析 78 4.2.1 VSM分析 78 4.2.2 綜合討論 81 4.3 C@CeO2樣品之電化學性質 83 4.3.1 循環伏安法分析 83 4.3.2 綜合討論 85 第五章 結論 86 參考文獻 87

[1] Johnson, M. Silsbee, et al., Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Physical Review Letters. 1985, 55 (17): 1790–1793.
[2] Baibich, M. N., et al., Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters. 1988, 61 (21): 2472–2475.
[3] Datta. S, Das. B, Electronic analog of the electrooptic modulator. Applied Physics Letters. 1990, 56 (7): 665–667.
[4] 胡裕民, III-V 稀磁性半導體薄膜之研究與發展. 物理雙月刊,2004.26(4): p.587-598.
[5] M. Y. Ge, et al., On the origin of ferromagnetism in CeO2 nanocubes, Applied Physics Letters 93, 062505 (2008)
[6] Shih-Yun Chen, et al., Concentration Dependence of Oxygen Vacancy on the Magnetism of CeO2 Nanoparticles, J. Phys. Chem. C 2012, 116, 15, 8707–8713
[7] 金屬/氧化物之界面結構與其室溫鐵磁特性關聯性研究 曾瀚輝
[8] CeO2中空球之殼層結構與其磁性之關聯性研究 陳泓傑
[9] Murata. K, Ueda. H, and Kawaguchi. K, Preparation of carbon powders by pyrolysis of cyclododecane under vacuum and their magnetic properties. Switzerland: N. p., 1991.
[10] Junchao Qian, et al., Enhanced Photocatalytic H2 Production on Three-Dimensional Porous CeO2/Carbon Nanostructure, ACS Sustainable Chemistry & Engineering 2018 6 (8), 9691-9698.
[11] Nan Zheng, Introduction to Dilute Magnetic Semiconductors. 2008.
[12] H. Ohno, et al., (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs, Appl. Phys. Lett. 69, 363 (1996)
[13] T. Dietl, et al., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science 11 Feb 2000: Vol. 287, Issue 5455, pp. 1019-1022.
[14] J. M. D. Coey, et al., Donor impurity band exchange in dilute ferromagnetic oxides, Nature materials, 2005. 4(2): p.173.
[15] SakiSonoda, et al., Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire(0 0 0 1) showing the ferromagnetic behaviour at room temperature, Journal of Crystal Growth , Volumes 237–239, Part 2, April 2002, Pages 1358-1362
[16] Kazunori SATO, et al., Stabilization of Ferromagnetic States by Electron Doping in Fe-, Co- or Ni-Doped ZnO, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L334–L336 Part 2, No. 4A, 1 April 2001
[17] Young Mok Cho, et al., Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x(Co0.5Fe0.5)xO thin films, Appl. Phys. Lett. 80, 3358 (2002).
[18] Hong, et al., Ferromagnetism in transition-metal-doped TiO2 thin films, PHYSICAL REVIEW B 70, 195204 (2004)
[19] Singhal, et al., Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2, Appl. Phys. Lett. 97, 172503 (2010).
[20] Faisal A. Al-Agel, et al., Structure and magnetic properties of diluted magnetic metal oxides based on Cu-doped CeO2 nanopowders, Ceramics International (2014)
[21] W. Hayes, et al., Defects and Defect Processes in Nonmetallic Solids, Wiley, New York, 1985.
[22] Yinglin Liu, et al., Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, J. Phys.: Condens. Matter 20 165201, 2008.
[23] Chikazumi, S. and C.D. Graham, Physics of Ferromagnetism 2e. Vol. 94. 2009: Oxford University Press on Demand.
[24] Chen, X., et al., Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping, 2009 Nanotechnology 20 115606.
[25] Hui-Ying Li, et al., Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications, PHYSICAL REVIEW B 79, 193401 (2009).
[26] William Lee, et al., Study of Defect Structure in Ferromagnetic Nanocrystalline CeO2: Effect of Ionic Radius, J. Phys. Chem. C 2016, 120, 27, 14874–14882
[27] Sundaresan, et al., Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, PHYSICAL REVIEW B 74, 161306(R) (2006)
[28] Shih-Yun Chen, et al., Interface interactions and enhanced room temperature ferromagnetism of Ag@CeO2 nanostructures, Nanoscale, 2017, 9, 10764-10772
[29] Shoujun Zhu, et al., Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging, Angew. Chem. 2013, 125, 4045 –4049
[30] Sabzehmeidani, et al., Carbon based materials: a review of adsorbents
for inorganic and organic compounds, Mater. Adv., 2021, 2, 598
[31] Bo-TaoZhang, et al., Application of carbon-based nanomaterials in sample preparation: A review, Analytica Chimica Acta Volume 784, 19 June 2013, Pages 1-17.
[32] Jagdish Narayan and Anagh Bhaumik, Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air, APL Materials 3, 100702 (2015)
[33] Yuki Sakai, James R. Chelikowsky, and Marvin L. Cohen, Magnetism in amorphous carbon, Phys. Rev. Materials 2, 074403 July 2018
[34] Junchao Qian, et al., Enhanced Photocatalytic H2 Production on Three-Dimensional Porous CeO2 / Carbon Nanostructure, ACS Sustainable Chem. Eng. 2018, 6, 9691−9698.
[35] Linhai Jiang, et al., Controlled Synthesis of CeO2/Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties, J. Phys. Chem. C 2012, 116, 11741−11745.
[36] Sumalin Phokha, et al., Effects of CeO2 nanoparticles on electrochemical properties of carbon/CeO2 composites, Applied Surface Science Volume 446, 15 July 2018, Pages 36-46
[37] Wenjian Wu, et al., Hollow CeO2 spheres conformally coated with graphitic carbon for high performance supercapacitor electrodes, Applied Surface Science Volume 463, 1 January 2019, Pages 244-252
[38] Warren, B. E., X-ray Diffraction. 1990: Courier Corporation.
[39] Egerton, R.F., Electron energy-loss spectroscopy in the electron microscope. 2011: Spring Science & Business Media.
[40] Koningsberger, D. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988
[41] Sayers, D. E., E. A. Stern, and F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray -absorption fine structure. Physical review letters, 1971. 27(18): p.1204.
[42] S. Kurita, et al., Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition, JOURNAL OF APPLIED PHYSICS 97, 104320 (2005)
[43] J. Schwan, Raman spectroscopy on amorphous carbon films, J. Appl. Phys. 80 (1), 1 July 1996.
[44] Awais Siddique Saleemi, et al., Structure dependent negative magnetoresistance of amorphous carbon thin films., Diamond and Related Materials Volume 72, February 2017, Pages 108-113
[45] J. R. McBride, K. C. Hass, Raman and x-ray studies of Ce, REXOz where RE=La, Pr, Nci, Eu, Gd, and .Tb, J. Appl. Phys. 76 (4), 15 August 1994.
[46] L.A.J. Garvie and P.R. Buseck, Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy, Journal of Physics and Chemistry of Solids, Vol. 60, pp. 1943 (1999)
[47] P. Nachimuthu, W.C. Shih and R.S. Liu, The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy, Journal of Solid State Chemistry, Vol. 149, pp. 408 (2000)
[48] Cuixia Cheng, et al., CeO2 mesoporous microspheres for high performance supercapacitors and lithium-ion batteries, Journal of Energy Storage Volume 35, March 2021, 102305
[49] N. Padmanathan, et al., Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes, RSC Adv., 2014, 4, 6527
[50] Aadithya Jeyaranjan, et al., Morphology and Crystal Planes Effects on Supercapacitance of CeO2 Nanostructures: Electrochemical and Molecular Dynamics Studies, Part. Syst. Charact. 2018, 35, 1800176

無法下載圖示 全文公開日期 2031/09/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE