簡易檢索 / 詳目顯示

研究生: 周天倫
Tien-Lun Chou
論文名稱: 懸吊式輕鋼架天花板系統煙洩漏量之研究
The Measurement of Smoke Leakage Performance from Suspended Ceiling System
指導教授: 林慶元
Ching-Yuan Lin
莊英吉
Ying-Ji Chuang
口試委員: 彭雲宏
Yeng-Horng Perng
林秉如
Ping-Ju Lin
郭詩毅
Shih-Yi Kuo
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 40
中文關鍵詞: 煙洩漏量懸吊式天花板系統壓差
外文關鍵詞: smoke leakage performance, suspended ceiling system, pressure difference
相關次數: 點閱:206下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主要針對懸吊式輕鋼架天花板之煙洩漏量進行研究,參考CNS 15038之規範要求及試驗原理,建置ㄧ套量測空氣洩漏量之設備,並提供詳細之組裝細節供使用者參考,本研究之測試方法為首創,藉由實尺寸之測試艙,進行天花板之遮煙性能研究,並針對不同天花板材質、天花板尺寸及施工方式,配合流體力學之學理,經過總計405次之試驗,提出不同尺寸及不同材質之天花板之洩漏量評估方式。研究中發現天花板材質不同,即使天花板尺寸相同,會產生不同之洩漏量。當天花板材質相同,而天花板尺寸不同時,並不是板材尺寸越大時,洩漏量會越大,最大片之板材造成之洩漏量反而是最小,這個現象非常特別。本研究並提出ㄧ個天花板整體之洩漏量評估表,未來可提供計算該非火災室之煙洩漏量值,進而可推估其煙下降時間以利逃生避難設計。本儀器設備經證明對於天花板有正確之洩漏量檢測能力,未來如延伸系統設計原理,可應用於其他防火產品之遮煙能力檢測。


    The key focus of the research is on the smoke leakage rate from suspended ceiling system, referencing CNS 15038 norm and its experimental principles to build a set of monitoring equipment for measuring air leakage rate and the provision of detailed assembly details for users’ reference. Through the real-size test chamber, the smoke insulation performance of the ceiling is studied. Targeting the different ceiling materials, ceiling panels dimensions and construction methods, in keeping with the scientific principles of fluid mechanics, a total of 405 tests are carried out to come up with the means of appraising the leakage rate of ceiling panels of different sizes and materials. The study found that with the ceiling panel material quality being different, even if the ceiling size is the same, different leakage rates could occur. When the material quality of the ceiling panels is the same and the ceiling size is different, it is not that the larger the size of the panel, the greater the leakage rate but the smallest leakage rate is caused by the largest panel and this is a very special phenomenon. This study also presents a leakage rate assessment table for entire ceiling panels, which will provide future calculations of the smoke leakage rate of the non-flame room, which can be extrapolated to assess the time of smoke decline and conducive for evacuation design. The apparatus has been proven to have proper leakage rate detection capability for the ceiling panels. In the future, the design principle of the extended system can be applied to the inspection and testing of smoke insulation capability of other fire prevention products. In turn, it can be estimated when the smoke has fallen to facilitate escape design.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………IV 目錄……………………………………………………………………V 圖目錄…………………………………………………………………VI 表目錄…………………………………………………………………VIII 第一章 前言……………………………………………………………..1 第二章 文獻回顧………………………………………………………..4 2.1明架輕鋼架天花板介紹...................................................4 2.2明架輕鋼架施工方法介紹...................................................5 2.3煙生成原因........................................................6 2.4煙流動因素........................................................6 2.5煙的毒性與危害........................................................8 第三章 試驗計劃………..………………………………………….10 3.1 試驗設備…............................................................10 3.2 試驗樣本...............................................................10 3.3試驗程序........................................................11 第四章 結果與討論…………………………………………………14 4.1 測試艙基本洩漏量..........………………................…………………14 4.2 各種樣本之洩漏量........………………......................………………….16 4.3 分析與應用............………………..…..........................…..……………….17 第五章 結論........………………………………………...…….22 參考文獻………………………………………………………..……...38

    1. Clarke, F. B., Physiological effects of smoke: Managing escape, ASHRAE Journal, Vol. 39, No. 3, 1997, pp.47-56.
    2. J. H. Klote, Smoke Control, SFPE Handbook of Fire Protection Engineering, 2nd Edition, Chapter 12 Section 4, pp.230-245, 1995.
    3. CNS 15038, Method of test for evaluating smoke control performance of doors, Taiwan, 2009.
    4. ISO 5925-1, Fire Test-Evaluation of Performance of Smoke Control Door Assemblies-Part 1: Ambient Temperature Test, Geneva, Switzerland, 2007.
    5. ISO 5925-2, Fire Test-Smoke Control Door and Shutter Assemblies-Part 2:Commentary on Test Method and Test Data Application, Geneva, Switzerland, 2006.
    6. JIS A 1516, Windows and doorsets - air permeability test, Japan, 1998.
    7. BS 476-31, Methods for measuring smoke penetration through door sets and shutter assemblies, 1983.
    8. DIN 18095-1, Smoke control doors; concepts and requirements, German, 1998.
    9. DIN 18095-2. Smoke control doors; type testing for durability and leakage, German, 1991.
    10. UL 1784, Air leakage tests of door Assemblies, 1990.
    11. ASTM E283, Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen, 2004.
    12. Chuang, Ying-Hung, Chuang, Ying-Ji and Lin, Ching-Yuan, Using a new testing method to measure smoke leakage of existing doors, Journal of Applied Fire Science, Vol. 16, No. 1, 2006, pp. 21-33.
    13. Shih-Yi Kuo, Study on application and development of a movable smoke leakage test apparatus across building opening assemblies, Journal of Applied Fire Science, Vol. 23(3), pp. 307-317, 2013.
    14. Chuang, Y.-J., Tsai, T.-H., Chuang, Y.-H., Lin, C.-Y., Huang C.-H. and Chen, P.-H., Performance assessment of single-leaf timber door in a smoke leakage test, Journal of Applied Fire Science, Vol. 16, No. 2, 2006, pp. 101-114.
    15. Ping-Ju Lin, Huai-Chu Mo, Chien-Wei Chiou, Ying-Hung Chuang, Chin-Hsing Huang, Chieh-Hsin Tang, Ying-Ji Chuang and Ching-Yuan Lin, Study on the Smoke Control Performance of Elevator Doors, Journal of Applied Fire Science, Vol. 18(4), pp. 309-316, 2008.
    16. Tung-Hung Tsai, Shih-Yi Kuo, Yi-Ting Tseng, Chieh-Hsin Tang, Ying-Ji Chuang and Ching-Yuan Lin, Rates of Smoke Leakage through Fire Stops, Journal of Engineering Research, Vol.1 (1), pp. 231-250, 2013.
    17. Klote, J. H., Smoke movement through a suspended ceiling system, Center for Fire Research, National Bureau of Standards (U.S.), NBSIR-81-2444, February 1982.
    18. Goff, J.A. and Gratch, S., Low-pressure properties of water from -160 to 212° F. Transactions of the American Society of Heating and Ventilating Engineers, Vol. 52, 1946, pp.95-122.
    19. Parekh, P.S., Beyond air leaks - How to do compressed air systems Analysis? Energy Engineering, Vol. 95(6), 1998, pp.7-29.
    20. CNS 4458, Gypsum boards, Taiwan, 2017.
    21. Hewitt, P. G., Bernoulli's Principle Understanding Bernoulli's principle as it applies to aerodynamic lift", National Science Teachers Association, Vol. 71(7), 2004, pp. 51-55.
    22. Chun-Chih Ting, The application of smoke management system in building fire. Journal of Sinotech Engineering Consultants, INC., Vol. 105, 2009, pp.51-59.
    23. http://140.122.142.231/~chem/oldWWW/chinese.htm , OCT. 15, 2020.

    QR CODE