簡易檢索 / 詳目顯示

研究生: 張智堯
CHIH-YAO CHANG
論文名稱: 利用先進的 LDPC 解碼策略抵禦區塊鏈中的數據可用性攻擊
Combating Data Availability Attacks in Blockchain using Advanced LDPC Decoding
指導教授: 謝松年
Sung-Nien Hsieh
口試委員: 林士駿
謝松年
黃楚翔
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 35
中文關鍵詞: 區塊鏈系統數據可用性攻擊低密度奇偶檢查碼停止集猜測解碼演算法
外文關鍵詞: Blockchain System, Data Availability Attack, Low Density Parity Check code, Stopping Set, Guessing Decoding Algorithm
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

輕節點在區塊鏈中透過僅存儲部分區塊鏈帳本來提高系統的可擴展性。然而,在某些區塊鏈中,輕節點容易受到數據可用性攻擊,惡意節點藉由隱藏區塊中的一小部分不合法交易數據,其中隱藏的數據對應到低密度檢查碼中的一組停止集,使誠實的全節點無法成功解碼回原始區塊,最後輕節點將接受新產生的不合法區塊。本論文引進了兩種改進的LDPC解碼策略,以提高全節點的解碼成功機率。我們通過猜測LDPC碼中被隱藏之變數節點的數值來執行進一步的解碼,並使用停止集列舉演算法來找出小於某個臨界值的所有停止集,,其中我們提出一組初始約束集合的設定方法來提高演算法的搜索效率,。我們的模擬結果顯示出當改善全節點解碼的成功機率時,能大幅降低輕節點接受不合法區塊的機率。


Light nodes in blockchain systems enhance scalability by storing only a portion of the blockchain ledger. However, in certain blockchains, light nodes are susceptible to data availability attacks. Malicious nodes can hide a small portion of illegal transaction data within the blocks, corresponding to a stopping set in low density parity check codes. This makes it impossible for honest full nodes to successfully decode the original block, causing light nodes to eventually accept newly generated illegal blocks. In this paper, we introduce two advanced decoding strategies to increase the decoding success probability of full nodes. By guessing the values of hidden variable nodes in the LDPC code, we execute further decoding. Additionally, we employ a stopping set enumeration algorithm to find all stopping sets smaller than a certain threshold. We propose an initial constraint set to improve the search efficiency of the algorithm. Our simulation results show that improving the decoding success probability of full nodes significantly reduces the probability of light nodes accepting illegal blocks.

第一章 1 1.1 引言 1 1.2 研究動機 1 1.3 論文章節概述 2 第二章 3 2.1 區塊鏈架構 3 2.2 編碼默克爾樹 5 2.3 區塊鏈節點 6 2.4 數據可用性攻擊 7 2.5 惡意節點模型 9 2.6 採樣策略 9 2.6.1 隨機採樣 9 2.6.2 貪婪採樣 9 2.6.3 線性規劃採樣 10 第三章 11 3.1 LDPC code 11 3.2 停止集 13 3.3 停止集列舉演算法 13 3.3.1 相關參數 14 3.3.2二位元擦除通道 14 3.3.3 擴展迭代解碼器 15 3.3.4邊際及分支 18 3.3.5 初始約束集合 22 第四章 24 4.1 哈希剝離解碼器 24 4.2 基於剝離解碼器之猜測演算法 1 25 4.3 基於剝離解碼器之猜測演算法 2 27 第五章 29 5.1 參數設定 29 5.1 模擬結果 29 第六章 33 6.1 結論 33 6.2未來展望 33 參考文獻 34

[1] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath, “Coded Merkle Tree: Solving data availability attacks in blockchains,” arXiv:1910.01247v2 [cs.CR], Dec. 2019.

[2] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability attacks in blockchain systems: Short code-length LDPC code design for coded Merkle tree,” IEEE Trans. Commun., vol. 70, no. 9, pp. 5742–5755, Sep. 2022.

[3] E. Rosnes and Ø. Ytrehus, “An efficient algorithm to find all small-size stopping sets of low-density parity-check matrices,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4167–4178, Sep. 2009.

[4] H. Pishro-Nik and F. Fekri, “On decoding of low-density parity-check codes over the binary erasure channel,” IEEE Trans. Inf. Theory, vol. 50, no. 3, pp. 439–454, Mar. 2004.

[5] Sareh Majidi Ivari, M. Reza Soleymani, and Yousef R. Shayan, “Low decoding complexity of LDPC Codes over the binary erasure channel,” in Proc. 26th Iranian Conference on Electrical Engineering (ICEE2018), pp. 52-56, 2018.

[6] M. J. Casey and P. Wong, “Global supply chains are about to get better, thanks to blockchain,” Harvard Bus. Rev., vol. 13, pp. 1–6, Mar. 2017.

[7] X. Wang et al., “Survey on blockchain for Internet of Things,” Comput. Commun., vol. 136, pp. 10–29, Feb. 2019.

[8] M. Mettler, “Blockchain technology in healthcare: The revolution starts 1374 here,” in Proc. IEEE 18th Int. Conf. e-Health Netw., Appl. Services 1375 (Healthcom), Sep. 2016, pp. 1–3.

[9] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[10] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[11] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[12] T. R. Halford and K. M. Chugg, “An algorithm for counting short cycles in bipartite graphs,” IEEE Trans. Inform. Theory, vol. 52, no. 1, 2006.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2074/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE