簡易檢索 / 詳目顯示

研究生: 蔡宇勛
Yu-Hsun Tsai
論文名稱: 以RANS紊流模型探討不同高寬比之地面單斜太陽能棚架平均風壓特性
Study of Mean Wind Pressures of Ground-mounted Monoslope Canopy with Different Heights by RANS Turbulence Model
指導教授: 陳瑞華
Rwey-Hua Cherng
黎益肇
Yi-Chao Li
口試委員: 黃慶東
鄭蘩
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 116
中文關鍵詞: 計算流體力學太陽光電系統風壓係數
外文關鍵詞: Computational Fluid Dynamics, Solar Photovoltaic Systems, Wind Pressure Coefficient
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能發電為目前國際上積極發展之重要綠色能源之一,各地設置於建築物屋頂或地面的太陽光電系統日漸增多。目前常見的太陽能光電系統大致分成五類,分別為斜屋頂平貼型、屋頂距置型、地面距置型、地面單斜式棚架型與平屋頂單斜式棚架型。依據國內相關規範,當地面單斜式棚架型之高寬比(棚架的屋頂平均高度除以屋頂弦長水平投影)介於0.25到1之間時,風壓係數為定值。而在此參數範圍外,規範未規定其風壓係數。因此,本研究針對地面單斜式太陽能棚架,使用計算流體力學方法模擬其平均受力特性;紊流模型採用穩態SST k-ω 模型,來流之上游假設為開闊地況;將依據風洞實驗結果來驗證模擬的準確性。再分別模擬棚架屋頂傾角10度、30度,以及不同高寬比之棚架,比較其平均風壓係數的差異性,作為地面單斜式棚架型耐風設計上之參考。
    本研究發現網格加密後,屋頂大部分平均風壓係數差異不大,但在屋頂邊緣會產生較平滑且合理的趨勢。當屋頂傾角較大時,CFD結果與風洞實驗結果較為接近,判斷是由於此時屋頂後方產生較大尺度雙渦流,SST k-ω 模型會有較準確之結果,同時風洞實驗屋頂下柱子的影響不大。當高寬比較小時,高寬比的變化會造成屋頂最大正風壓係數及最大負風壓係數較明顯的變化。


    Solar power generation is one of the important green energy sources currently actively developed internationally. Solar photovoltaic systems installed on the ground or building roofs are increasing. Ac-cording to the wind resistant design code, when the height-to-width ra-tio (average height of the roof of the canopy divided by the horizontal projection of the chord length of the roof) of the ground monoslope canopy is between 0.25 and 1, the wind pressure coefficient is given as a constant; no values are specified outside this parameter range. There-fore, this study aims at exploring the characteristics of mean wind pres-sures of ground monoslope canopies using CFD; steady-state SST k-ω turbulence model is adopted and the upstream of the incoming flow is assumed to be open terrain; the associated wind tunnel test results will be used to verify the accuracy of the CFD simulation. It is found that finer grid arrangements give smoother and more reasonable prediction for the wind pressures, especially at the roof edge. When the roof in-clined angle gets larger, larger-scale eddies behind the roof make the SST k-ω model more accurate, and the pillars under the roof in wind tunnel tests have little effect. Moreover, the variation of the height-to-width ratio has a larger impact on the extremes of mean wind pressures when the height-to-width ratio is smaller.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1研究緣起與動機 1 1.2論文架構 2 第二章 文獻回顧 3 2.1大氣邊界層之相關文獻 3 2.2地面單斜式太陽能棚架之相關文獻 4 第三章 計算流體力學(CFD)之介紹 7 3.1控制方程式 7 3.2紊流模型 9 3.3 SIMPLE演算法 12 3.4壁面處理 13 3.4.1 壁函數與近壁面模型之差異 14 3.4.2 近壁面網格 14 3.5模擬相似性 15 3.5.1雷諾數 16 第四章CFD模型之建立 19 4.1模擬案例介紹 19 4.2計算域規劃 20 4.3參數設定 21 4.3.1入流及出流條件 21 4.3.2邊界條件 22 4.3.3網格切割 23 4.3.4收斂條件 23 第五章 CFD之結果與驗證 25 5.1 CFD網格品質之檢驗 25 5.1.1格網相依性 25 5.1.2近壁面之加密 26 5.2 Case 1之CFD結果與驗證 27 5.3 Case 2之CFD結果與驗證 29 第六章 高寬比對平均淨風壓係數之影響 33 6.1屋頂傾角10度時高寬比之影響 33 6.1.1流線圖及流速分布圖 33 6.1.2 屋頂中心線及屋頂邊緣之風壓係數 34 6.1.3各區域及各有效受風面積之淨風壓係數 37 6.2屋頂傾角30度時高寬比之影響 39 6.2.1流線圖及流速分布圖 40 6.2.2屋頂中心線及屋頂邊緣之風壓係數 41 6.2.3各區域及各有效受風面積之淨風壓係數 44 第七章 結論與建議 45 7.1 結論 45 7.2 建議 46 參考文獻 114

    [1] ANSYS,Inc. “ANSYS FLUENT 14.0,User’s Guide”, 2011.
    [2] ANSYS,Inc. “ANSYS FLUENT 12.0 Theory Guide”, 2009.
    [3] ASCE7. “Minimum Design Loads And Associated Criteria For Buildings And Other Structures”, 2016.
    [4] Ayodeji Abiola-Ogedengbe. “Experimental investigation of wind effect on solar panels”, 2013.
    [5] A. M. Aly., G. Bitsuamlak., “Aerodynamic loads on ground-mounted solar panels: multi-scale computational and experimental investigations”, 2014.
    [6] Blocken, B., Stathopoulo, T., Carmeliet, J. “CFD simulation of the atmospheric boundary layer: wall function problems”,Atmos. Environ, 2007, pp. 238-252.
    [7] Chowdhury Mohammad Jubayer, Horia Hangan. “Numerical simulation of wind effects on a stand-alone ground mounted pho-tovoltaic (PV) system”, 2014.
    [8] Duthinh. D., J. A. Main, B. M. Phillips. “Analysis of Wind Pressure Data on Components and Cladding of Low-Rise Buildings” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, 2017, Part A: Civil Engineering, ASCE, ISSN 2376-7642.
    [9] Delaunay, B.“Sur La sphère Vide.” Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii I Estestvennyka Nauk, 1934, 7(793-800):1-2.
    [10] Delaunay, B. “On the empty sphere. ” In Memory of Georges Voronoi. Bulletin of the USSR Academy of Sciences, 1934, Section: Mathematics and Natural Sciences 6: 793-800.
    [11] Emil Simiu, Robert H. Scanlen, “Wind Effect On Building: Fundamentals and Applications to Design”, 1996.
    [12] Emil Simiu, Dong-Hau Yeo. “Wind Effect On Building: Modern Structural Design for Wind”, 2019.
    [13] Fage, A., Johansen, F.C. On the flow of air behind an inclined flat plate of infinite span (Containing Papers of a Mathematical and Physical Character). Proc. R. Soc. Lond. , 1927, Ser. A 116, 170–197.
    [14] G.T. Bitsuamlak, A.K. Dagnew, J.Erwin. “Evaluation of wind loads on solar panel modules using CFD”, in Proceedings of the Fifth International Symposium on Computational Wind Engineer-ing, Chapel Hill, North Carolina, USA, 2010.
    [15] JIS, “JIS-C8955” .Loading Design Guide on Structures For Pho-tovoltaic Array, Japanese Standard Association”, 2017.
    [16] MATLAB. MATLAB documentation 2018b. The Mathworks Inc., 2018.
    [17] Menter, F.R. “Two-Equation Eddy-Viscosity Turbulence Models For Engineering Applications”, AIAA J., 1994, Vol. 32, pp. 1598-1605.
    [18] SEAOC.Solar Photovoltaic Systems Committee, “Wind Design For Low-Profile Solar Photovoltaic Arrays On Flat Roofs”, 2012.
    [19] Shademan, M., Barron, R.M., Balachandar, R., Hangan, H. “Nu-merical simulation of wind loading on ground-mounted solar panels at different flow configurations. ” Can. J. Civ. Eng. 41, 2014, 728–738.
    [20] Voronoi, G. “New Applications of Continuous Parameter in the Theory of Quadratic Forms.” Journal of Pure and Applied Mathematics 133, 1908, 97-178.
    [21] 內政部營建署,建築物耐風設計規範及解說,2015年。
    [22] 方富民、黎益肇、賴冠廷、李唯佳,應用高精度數值地形模型進行CFD風場模擬,內政部建築研究所委託研究報告,2016年。
    [23] 中華民國風工程學會,風工程理論與應用,科技圖書,2016年。
    [24] 朱佳仁,風工程概論,科技圖書,2006年。
    [25] 林逸崧,棚架型太陽光電系統極值風壓係數之估計,國立台灣科技大學營建工程學系碩士學位論文,2019年。
    [26] 陳瑞華、傅仲麟、蔡宇勛、沈朝斌、林逸崧,太陽光電系統之耐風設計規範研擬,內政部建築研究所委託研究報告,2020年。

    無法下載圖示 全文公開日期 2025/11/30 (校內網路)
    全文公開日期 2050/11/30 (校外網路)
    全文公開日期 2050/11/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE