簡易檢索 / 詳目顯示

研究生: 侯威銘
Wei-Ming Hou
論文名稱: 以同步輻射解析卜作嵐反應行為及機理之研究
A Study on Pozzolanic Reaction Behavior and Mechanism by SRA
指導教授: 黃兆龍
Chao-Lung Hwang
口試委員: 沈得縣
none
林宏達
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 77
中文關鍵詞: 爐石飛灰微結構卜作嵐反應高性能混凝土
外文關鍵詞: slag, microstructure, fly ash, HPC, pozzolanic reaction
相關次數: 點閱:325下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用同步輻射(SRA),核磁共振(NMR),壓汞儀(MIP),電子顯微鏡(SEM),燒失法(LOI),電阻、電滲解析含爐石,飛灰高性能混凝土複合材料微觀結構。試驗結果顯示,含飛灰水泥漿體,在早齡期時(加水後2小時內),由[SiO2(OH)] -2離子鏈組成C2SH2(B); [SiO3(OH)]-3離子組成C2SH2(A),Afwillite(C-S-H之一種)。由於Ca2+離子吸附於飛灰顆粒表面,產生毒化作用,降低Ca2+之濃度延遲CH成核時間,而飛灰與C3A形成C4AH13之六角形層狀保護層,延遲C3A之水化作用;故同齡期C2S、C3A、C4AF並無水化物產生。由同步輻射與NMR、MIP、SEM、電阻、電滲等實驗,前後互通,巨微互証,齡期28天後,飛灰、爐石之卜作嵐反應,降低水泥漿體中之氫氧化鈣含量,封填毛細孔隙,改變複合材料微觀結構排列方式,使混凝土更均質、緻密,提升抗壓強度、阻抗力,降低滲透性,增加耐久性。


This study tries to analyze the microstructure of HPC containing slag and fly ash, and the following methods are employed: SRA, NMR, MIP, SEM, LOI, Electrical Resistivity and Permeability. The test results show that, at the early age inside the cement paste with fly ash, [SiO2(OH)]-2 ionic bond forms C2SH2(B), and [SiO3(OH)]-3 forms C2SH2(A). Afwillite (one kind of C-S-H). Since the Ca2+ ion sticks on the surface of fly ash particle, causing the spoiling effect, the Ca2+ content is reduced and then the forming of nuclide is delayed. On the other side, fly ash and C3A can produce a hexagonal-layered protection which helps put off the hydration of C3A, and therefore there is no hydration product for C2S, C3A and C4AF. By the test of SRA and those of NMR, MIP, SEM, Electrical Resistivity and Permeability, the outcomes from macroview and microview both illustrate that the pozzalanic reaction of fly ash and slag can reduce the content of calcium hydroxide to fill the capillary porosity. Thus the microstructure order of the complex material is rearranged, and then the compression strength and resistivity are enhanced. At the same time, the permeability is reduced and more durability is gained.

Chapter 1 Introduction 1-1 motivation…………………………………………………………………1 1-2 objectives…………………………………………………………………….1 1-3 study scope and method…………………………………………………2 Chapter 2 Literature Review 2-1 mechanism of SRA……………………………………………………………3 2-2 hydration behavior of cement paste………………………………………7 2-3 the interface weakness zone……………………………………………13 2-4 pozzolanic material…………………………………………………………15 2-5 the mechanism of fly ash and slag within the concrete…………………19 Chapter 3 Experimental Plans 3-1 test flow…………………………………………………………………………22 3-2 test materials…………………………………………………………………23 3-3 water-to-binder ratio and mixture proportion of HPC………………………24 3-4 experimental procedures………………………………………………………24 Chapter 4 Results and Analyses 4-1 SRA observation………………………………………………………………27 4-2 NMR observation…………………………………………………………37 4-3 the loss on ignition of Ca (OH)2…………………………………………42 4-4 compressive strength……………………………………………………44 4-5 MIP tests……………………………………………………………………47 4-6 SEM observation…………………………………………………………51 4-7 electrical resistance tests…………………………………………………57 4-8 electrical permeability tests………………………………………………59 4-9 permeability tests…………………………………………………………62 4-10relationship between capillary pore volume, electrical resistance, permeability and compressive strength…………………………………65 4-11The SRA test results of the cement paste with fly ash and slag are also mutually proven by the NMR, LOI, MIP and SEM tests ……………67 Chapter 5 Conclusion and Suggestion 5-1 conclusion…………………………………………………………………69 5-2 suggestion…………………………………………………………………70 REFFEENCES…………………………………………………………………71

1. Winick, H, Synchrotron radiation research, John Wiley & Sons Inc.New York, PP. 11- 25 (1980).
2. Chang, P. K., “Hydration properties of high performance concrete analyzed by Synchrotron radiation,”SRRC1995 Annual User Meeting, P. 29 (1995).
3. Teo, B. K.,“EXAFS: Basic principles and data analysis, ”Springer-Verlag, Berlin, (1986).
4. Stern, F. A., “X-ray absorption: principles, applications, technigues of EXAFS, SEXAFS, ” New York, pp.3-51 (1988).
5. ACI “ Fly Ash, silica fume, slag and other mineral by-products in concrete,” VOl. 1 and VOl. 11, ACI, SP79. Detroit, (1983).
6. Mindess, S. and J. F. Young, Concrete, Prentice-Hall, Englewood Cliffs, New Jersey (1993).
7. Mehta, P. K. Concrete structure, properties and materials, Prentice-Hall, Englewood Cliffs, N. J. (1986).
8. C. L. Hwang, Concrete, properties and behavior, Chans Arch Books, Taiwan (1998).
9. C. L. Hwang, High performance cconcrete, practical and theory, Chans Arch Books, Taiwan (2003).
10. P. K. Chang, W. M. Hou, C. L. Hwoang, A study on the microstructure of the nano concrete composite materials, Mat. Res. Soc. Symp. Proc. VoL791@2004 Materials Research Socity (Q8.2.1-Q8.2.17)
11. W. M. Hou, P. K. Chang, C. L. Hwang, astudy on anticorrosion effect in high-performance concrete by the pozzolanic reaction of slag, Cem. Concr. Res 34 (2004) 615-622.
12. P. K. Chang, W. M. Hou, A study on the hydration properties of high performance slag concrete analyzed by SRA, Cem. Concr. Ress 33 (2003) 183-189.
13. P.K. Mehta, P.J.M. Monteiro, Concrete-structure, properties, and materials, 2nd Ed., Prentice-Hall, New Jersey, 1993.
14. Aiticn, P.C. and A. Neville, “High performance concrete demystified,” ACI Concrete International, 15 (1) ACI, Detroit, pp. 21-26 (1993).
15. Chang, P. K., Y. N. Peng, “Influence of mixing techniques on properties of high
performance concrete,” Cement & Concrete Research Vol. 31 (2001) PP. 87-95.
16. Chang, P. K., Y. N. Peng, C. L. Hwang, “A design consideration for durability of high performance concrete,” Cement & Concrete Composite Vol. 23 (2001) PP. 375-380.
17. C.L. Hwang, Y.Y. Chen, The design and verification criteria of structural concrete under marine environment, J Architecture, 36 (2001) 38-52.
18. ACI Committee 318-02, Building code requirements for structural concrete and commentary, Am. Concr. Inst.,(2002)(Detroit).
19. P.K. Chang, C.L. Hwang, Y.N. Peng, Application of high performance concrete to high rise building in Taiwan, Adv in Struc Eng, 4 (2)(2001)65-73.
20. ACI Committee 304, Recommended practices for measuring, mixing, transporting, and placing concrete, ACI Mater. J. 69 (1972) 374-414.
21. Malier, Y,“The French approach to using HPC,”Concrete International, P. 70,(1991)。
22. Hwang, C. L. “High performance concrete demystified”. ACI Concrete International, 15(1), ACI, Detroit, PP.21-26(1993)。
23. Wang, H. Y., T. C. Chai, F. Y. Lin, and C. L. Hwang,“The relationship of mixture proportion of high performance concrete in T&C tower with packing of aggregate,”Fly Ash and Slag Concrete Utilization Semina, Central University, PP. 13-28 (1994)。
24. C.L. Hwang, The study of guality and guantity of cement paste on the concrete properties, Dep. of Cons. Eng. NTUST. (1999).
25. P.K. Chang, Y.N. Peng, Influence of mixing techniques on properties of high performance concrete, Cem. Concr. Res. 31 (1) (2001) 87-95.
26. Once, M. “A study of inter grinding and separate grinding of blast furnace slag cement,” Cement and Concrete Research, VO1 30, PP.473-480 (2000).
27. Malhotra, V. M., “Cement investigations dealing with high-volumefly ash concrete,” Advances in Concrete Technology, Cement Publication MSL94-1 (IR), pp.445-482 (1994).
28. Tixier, R. R. Devaguptapu, and B. Mobasher, “The effect of copper slag on the hydration and mechanical properties of cementitious mixture,” Cement and Concrete Research, Vol. 27, No.10, PP.1569-1580 (1997).
29. T.C. Powers, The specific surface area of hydrated cement obtained from permeability date, Mater. of Cons. 12 (69) (1972) 159-162.
30. V.M. Malhotra, Fly ash, slag, silica fume, and rice-husk ash in concrete a review, Concr. Int. 15(1993)73-76.
31. R. Tixier, R. Devaguptapu, B. Mobasher, The effect of copper slag on the hydration and mechanical properties of cementitious mixture, Cem. Concr. Res. 27 (10) (1997) 1569-1580.
32. M.Once, A study of inter-grinding and separate grinding of blast furnace slag cement, Cem. Concr. Res. 30 (2000) 473-480.
33. Shunsuke Hanehara, Fuminori Tomosawa, Makoto Kobaya Kawa, Kwang Ryul Hwang, Effects of water/powder ratio, mixing ratio of fly ash, and curing temperature on pozzolanic reaction of fly ash in cement paste, Cem. Concr. Res. 31 (2001) 31-39.
34. P. J. Wainwright, N. Rey, The influence of ground granulated blastfurnace Slag (GGBS) additions and time delay on bleeding of concrete, Cement & Concrete Composites 22 (2000) 253-257.
35. S. V. Dimitrova and D. R. Mehanjiev, Interaction of blast-furnace Slag with heavy metal ions in water solutions, Wat. Res. Vol. 34, NO. 6, (2000) 1957-1961.
36. M. Once, A study of inter grinding and separate grinding of blast furnace slag cement, Cem. Concr. Res. 30 (2000) 473-480.
37. Justnes, H., I. Meland, J. O. Bjorgum, and J. Krane, A 29Si MAS NMR study of the pozzolanic activity of condensed silica fume and the hydration of Di and tricalcium silicates, SINTEF PCB Report, Norway, 1-26(1990)
38. S. Gomes, M. Francois, Characterization of mullite in silicoaluminous fly ash by XRD, TEM, and 29Si MAS NMR, Cem, Concr. Res. 30 (2000) 175-181.
39. Samuel Philippot, Sylvie Masse, Helene Zanni, Pedro Nieto, Vincent Maret, and Marcel Cheyrezy, 29Si MAR study of hydration and pozzolanic reactions in reactive concrete(RPC), Magnetic Resonance Imaging, Vol.14, Nos, (1996) 891-893.
40. I. Jaymes, A. D. Massiot, J. P. Coutures, Evolution of the Si environment in mullite Solid solution by 29Si MAS-NMR spectroscopy, J Non-Cry stall in Sol 204 (1996) 125-134.
41. R. C. D. Slade, T. W. Davies, Evolution of structural changes during flash calcinations of kaolinite-A 29Si and 27Al nuclear magnetic resonance spectroscopy study, J Mater Chem 1 (3)(1991) 361-364.
42. Pietersen, H. S., A. P. M. Kentgens, G. H. Nachtegaal, W. S. Veeman, and J. M. Biuen, The reaction mechanism of blended cement: A 29Si MAR Study, ACI SP 132-144, (1992) 758-812.
43. Sheen, Y. N. and C. L. Hwang, The study of hydration model and strength characteristics of cement paste by NMR, Journal of Technology, Vol. 10, NO. 2, (1995) 151-156.

QR CODE