簡易檢索 / 詳目顯示

研究生: 洪子軒
Zih-Syuan Hong
論文名稱: 化學迴路燃燒程序中鐵錳載氧體之氧化還原現象與二氧化硫減量之研究
Redox Behavior and Sulfur Dioxide Reduction for Iron-Manganese Oxygen Carriers during Chemical Looping Combustion
指導教授: 李豪業
Hao-Yeh Lee
顧 洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 107
中文關鍵詞: 化學迴路燃燒程序鐵-錳載氧體氧化還原動力成核與核生長模型脫硫程序
外文關鍵詞: Chemical looping combustion, Iron-manganese oxygen carriers, Redox kinetics, Nucleation and nuclei growth model, Desulfurization process
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之主要目的為製備鐵錳複合載氧體,並於熱重分析儀中進行化學迴路燃燒與二氧化硫脫除之程序,從中探討不同操作條件如:反應溫度、氧分壓和操作氣氛對鐵錳載氧體反應性的影響。實驗結果顯示,氧化錳有效地改善氧化鐵的還原動力,同時在燃燒效率未大幅降低的情形下,可以減低化學迴路的操作溫度,以減少能源的損耗;對於氧化錳而言,氧化鐵則改善其氧化動力,使氧分壓對其氧化動力的影響減小,並提升鐵錳載氧體的攜氧量。在合成氣的操作環境下,根據載氧體的轉化率、晶體結構變化以及氣固反應模型的假設條件,可以回歸計算出鐵錳載氧體的還原遵循著反應級數模型,該模型強調孔擴散反應機制,其反應速率主要與反應物濃度變化變化有關,反應過程受到質傳阻力的影響較小。根據計算,錳、鐵錳(FM14)和鐵載氧體的表觀活化能分別為10.3 kJ/mol,24.2 kJ/mol和33.8 kJ/mol,氧化錳的添加有助於降低氧化鐵的還原反應活化能。鐵錳載氧體的氧化速率受到環境氧分壓的影響極大,消除氧分壓的影響並進行分析,發現鐵錳載氧體的氧化遵循成核與核生長模型,而FM14載氧體氧化反應的活化能為24.2 kJ/mol。
本研究亦以比較鐵錳載氧體在不同反應溫度下,脫除二氧化硫的能力,並以氫氣還原或熱能再生載氧體。實驗結果發現相較於氧化鐵,氧化錳具有較高的脫硫能力,然而,熱不穩定性導致高溫操作下熱分解的發生,大幅的降低了其脫硫能力。氧化鐵的存在足以穩定鐵錳載氧體的熱穩定性,在載氧體再生的過程中,使用氫和熱皆可以完全除去所有硫化物,而鐵錳載氧體在硫化-再生的循環迴圈操作中,表現出良好的再循環性。


In this study, iron-manganese oxygen carriers with various mass ratios were prepared for the investigation of chemical looping combustion and desulfurization process under different operation conditions in TGA. Effect of reaction temperature, oxygen partial pressure and operating atmospheres on the reactivity of iron-manganese oxygen carriers were discussed in this study. Experimental results shown that manganese oxygen carriers effetely improved the reduction kinetics of iron oxygen carriers and reduced the operation temperature of chemical looping combustion without greatly reducing the combustion efficiency. Iron oxygen carriers can improved the oxidation kinetics of manganese oxygen carriers. The redox kinetics were established based on the conversion of oxygen carriers, mechanism assumptions and the transformation of crystal structure. The regression analysis shown that the reduction of iron-manganese oxygen carriers follows a reaction order model, which is a pore diffusion reaction mechanism and the reaction rate proportional to the concentration of reactants. The apparent activation energy of manganese, FM14 and iron oxygen carriers are 10.3 kJ/mole, 24.2 kJ/mole and 33.8 kJ/mole, respectively. The oxidation of iron-manganese oxygen carriers follows a nucleation and nuclei growth model. With eliminating the influence of oxygen partial pressure on the oxidation rate, the activation energy of FM14 oxygen carriers was found to be 24.2 kJ/mole.
The performance of desulfurization capability of iron-manganese oxygen carriers at various reaction temperatures, and the regeneration of oxygen carriers by using hydrogen or heat were studied. Manganese oxygen carriers were found to have the highest desulfurization capability among all the tested oxygen carriers. However, the thermal instability causes manganese oxygen carriers decompose at high operation temperature, which greatly reduce the desulfurization capability. The presence of iron oxygen carriers stabilize the thermal stability of iron-manganese oxygen carriers. It was found that all the sulfur components can be completely removed by using both hydrogen and heat during the regeneration of iron-manganese oxygen carriers. Iron-manganese oxygen carriers exhibited good recyclability during the sulfurization-regeneration cycles.

Chinese Abstract..............................................................I English Abstract..............................................................III Acknowledgments...............................................................V Table of Content..............................................................VII List of Figures...............................................................IX List of Tables................................................................XIV List of Symbols...............................................................XV Chapter 1 Introduction........................................................1 Background....................................................................1 1.2 Objectives and Scope......................................................3 Chapter 2 Literature and Review...............................................5 2.1 Chemical Looping Process..................................................5 2.1.1 Chemical Looping Combustion.............................................5 2.1.2 Development of Oxygen Carriers for Chemical Looping Process.............12 2.1.3 Iron-Manganese Oxygen Carriers..........................................19 2.2 Air Pollutants in Chemical Looping Process................................22 2.2.1 Formation of Nitrogen and Sulfur Oxides.................................22 2.2.2 Selection of Oxygen Carriers for Desulfurization Process................27 2.3 Gas-Solid Reaction Models for Chemical Looping Process....................35 Chapter 3 Materials and Experiments...........................................41 3.1 Materials.................................................................41 3.2 Apparatus and Instruments.................................................41 3.3 Experimental Procedures...................................................42 3.3.1 Experimental Framework..................................................42 3.3.2 Preparation and Characterization of Iron-Manganese Oxygen Carriers......45 3.3.3 Operation of TGA........................................................47 Chapter 4 Results and Discussion..............................................51 4.1 Background Experiments....................................................51 4.1.1 Characterization of Iron-Manganese Oxygen Carriers......................51 4.1.2 Weight Ratios of Iron-Manganese Oxygen Carriers.........................55 4.2 Reduction of Iron-Manganese Oxygen Carriers...............................61 4.2.1 Oxygen Uncoupling Capability............................................61 4.2.2 Reactivity with Syngas..................................................63 4.2.3 Kinetic Analysis of Syngas Combustion...................................68 4.3 Oxidation of Iron-Manganese Oxygen Carriers...............................83 4.3.1 Reactivity with Air.....................................................83 4.3.2 Reactivity with 5 vol.% O2..............................................87 4.3.3 Kinetic Analysis of FM14 Oxygen Carriers................................90 4.4 Removal of Sulfur Dioxide in Chemical Looping Process.....................93 4.4.1 Desulfurization Capability of Iron-Manganese Oxygen Carriers............93 4.4.2 Regeneration of Iron-Manganese Oxygen Carriers..........................97 Chapter 5 Conclusions and Recommendations....................................103 Reference....................................................................107

Abad, A., Costa, T.R., Gayán, P., García-Labiano, F. de Diego, L.F., Melo, D.M.A. and Adánez, J., “Mn-Based Oxygen Carriers Prepared by Impregnation for Chemical Looping Combustion with Diverse Fuels,” Fuel Process. Technol., Vol. 178, pp. 236-250 (2018).
Abad, A., Pérez-Vega, R., García-Labiano, F., Gayán, P., de Diego, L.F., Teresa Izquierdo, M. and Adánez, J., “Chemical Looping Combustion of Gaseous and Solid Fuels with Manganese-Iron Mixed Oxide as Oxygen Carrier,” Energy Convers. Manage., Vol. 159, pp. 221-231 (2018).
Abad, A., Pérez-Vega, R., Gayán, P., de Diego, L.F., García-Labiano, F. and Adánez, J., “Development of (Mn0.77Fe0.23)2O3 particles as an oxygen carrier for coal combustion with CO2 capture via in-situ gasification chemical looping combustion (iG-CLC) aided by oxygen uncoupling (CLOU),” Fuel Process. Technol., Vol. 164, pp. 69-79 (2017).
Adánez, J., de Diego, L.F., García-Labiano, F., Gayán, P., Abad, A. and Palacios, J.M., “Selection of Oxygen Carriers for Chemical-Looping Combustion,” Energy Fuels, Vol. 18, pp. 371-377 (2004).
Azimi, G., Leion, H., Rydén, M., Mattisson, T. and Lyngfelt, A., “Investigation of Different Mn-Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU),” Energy Fuels, Vol. 27, pp. 367-377 (2013).
Azimi, G., Leion, H., Mattisson, T., Rydén, M., Snijkers, F. and Lyngfelt, A., “Mn-Fe Oxides with Support of MgAl2O4, CeO2, ZrO2 and Y2O3-ZrO2 for Chemical-Looping Combustion and Chemical-Looping with Oxygen Uncoupling,” Ind. Eng. Chem. Res., Vol. 53, pp.10358-10365 (2014).
Chang, L., Ren, X.R., Bao, W.R., Li, F. and Xie, K.C., “Desulfurization Performance of Iron-Manganese-Based Sorbent for Hot Coal Gas,” Front. Chem. Eng. China, Vol. 4, pp. 429-434 (2010).
Chang, L., Ren, X.R., Li, F. and Xie, K.C., “Study of Intrinsic Sulfidation Behavior of Fe2O3 for High Temperature H2S Removal,” Fuel, Vol. 89, pp. 883-887 (2010).
Cheah, S., Carpenter, D.L. and Magrini-Bair, K.A., “Review of Mid- to High-Temperature Sulfur Sorbents for Desulfurization of Biomass- and Coal-Derived Syngas,” Energy Fuels, Vol. 23, pp. 5291-5307 (2009).
Cheng, F.Q. Zhang, K., Di, Z.C., Cao, Y. and Yang, F.L., “Studies on Steel Slag as an Oxygen Carrier for Chemical Looping Combustion,” Fuel, Vol. 226, pp. 618-626 (2018).
Clayton, C.K., Sohn, H.Y. and Whitty, K.J., “Oxidation Kinetics of Cu2O in Oxygen Carriers for Chemical Looping with Oxygen Uncoupling,” Ind. Eng. Chem. Res, Vol. 53, pp. 2976-2986 (2014).
Coronado, J.M., Carrillo, A.J., Serrano, D.P. and Pizarro, P., “Understanding Redox Kinetics of Iron-Doped Manganese Oxides for High Temperature Thermochemical Energy Storage,” J. Phys. Chem. C, Vol. 120, pp. 27800-27812 (2016).
de Diego, L.F., García-Labiano, F., Gayán, P., Abad, A., Cabello, A., Adánez, J. and Sprachmann, G., “Performance of Cu- and Fe-Based Oxygen Carriers in a 500 Wth CLC Unit for Sour Gas Combustion with High H2S Content,” Int. J. Greenhouse Gas Control, Vol. 28, pp. 168-179 (2014).
EI-Geassy, A.H.A, Mousa, E.S.A., Omar, A.A. and Nasr, M.I., “Volume Changes of Iron Oxide Compacts under Isothermal Reduction Conditions,” Steel Res. Int., Vol. 78, pp. 579-587 (2007).
Fan, L.F., Tong, A., Chung, C., Pottimurthy, Y., Xu, M., Hsieh, T.L., Xu, D., Zhang, Y., Chen, Y.Y., He, P. and Pickarts, M., “Fate of Sulfur in Coal-Direct Chemical Looping Systems,” Appl. Energy, Vol. 208, pp. 678-690 (2017).
Fan, L.S., Zeng, L., Kathe, M.V. and Chung, E.Y., “Some Remarks on Direct Solid Fuel Combustion using Chemical Looping Processes,” Curr. Opin. Chem. Eng., Vol. 1, pp.290-295 (2012).
Fan, L.S., Zeng, L., Wang, W. and Luo, S.W., “Chemical Looping Processes for CO2 Capture and Carbonaceous Fuel Conversion - Prospect and Opportunity,” Energy Environ. Sci., Vol. 5, pp.7254-7280 (2012).
Flanagan, D.R. and Khawam, A., “Solid-State Kinetic Models: Basics and Mathematical Fundamentals,” J. Phys. Chem. B, Vol. 110, pp. 17315-17328 (2006).
Folorunsho, A. and Adeyi, A.A., “Comparative Analysis of Adsorptive Desulphurization of Crude Oil by Manganese Dioxide and Zinc Oxide,” Res. J. of Chem. Sci., Vol. 2, pp. 14-20 (2012).
Forero, C.R., Velasco-Sarria, F.J., Arango, E. and Adánez, J., “Reduction and Oxidation Kinetics of Fe-Mn-Based Minerals from Southwestern Colombia for Chemical Looping Combustion,” Energy Fuels, Vol. 32, pp. 1923-1933 (2018).
García-Labiano, F., Dueso, C., Adánez, J., de Diego, L.F., Gayán, P. and Abad, A., “Syngas Combustion in a Chemical-Looping Combustion System using an Impregnated Ni-Based Oxygen Carrier,” Fuel, Vol. 88, pp. 2357-2364 (2009).
Gayán, P., Abad, A., Mendiara, T., Bueno, J.A., Abad, A., García-Labiano, F., de Diego, L.F. and Adánez, J., “Assessment of the Improvement of Chemical Looping Combustion of Coal by using a Manganese Ore as Oxygen Carrier,” Fuel Process. Technol., Vol. 176, pp. 107-118 (2018).
Gayán, P., Pérez-Vega, R., Adánez-Rubio, I., Izquierdo, M.T., Abad, A., García-Labiano, F., de Diego, L.F. and Adánez, J., “Sulphur, Nitrogen and Mercury Emissions from Coal Combustion with CO2 Capture in Chemical Looping with Oxygen Uncoupling (CLOU),” Int. J. Greenhouse Gas Con., Vol. 46, pp. 28-38 (2016).
Gonzalez-Aguilar, J., Alonso, E., Hutter, C., Romero, M. and Steinfeld, A., “Kinetics of Mn2O3-Mn3O4 and Mn3O4-MnO Redox Reactions Performed under Concentrated Thermal Radiative Flux,” Energy Fuels, Vol. 27, pp. 4884-4890 (2013).
Gu, H.M., Shen, L.H., Zhong, Z.P., Niu, X., Ge, H.J., Zhou, Y.F., Xiao, S. and Jiang, S.X., “NO Release During Chemical Looping Combustion with Iron Ore as an Oxygen Carrier,” Chem. Eng. J., Vol. 264, pp. 211-220 (2015).
Han, Y.X., Yu, J.W., Li, Y.J., Gao, P. and Li, W.B., “Mechanism and Kinetics of the Reduction of Hematite to Magnetite with CO-CO2 in a Micro-Fluidized Bed,” Minerals, Vol. 7, pp. 209- 220 (2017).
Hsu, F., “Feasibility Evaluation of Manganese Ore as Oxygen Carrier for Chemical Looping Combustion Process,” Master's Thesis, National Taiwan University of Science and Technology. (2018).
Huang, H.Y., Liu, X.C., Osaka, Y., Kodama, A., He, Z.H., Huhetaoli, Yang, X.X. and Chen, Y., “Development of High-Performance SO2 Trap Materials in the Low-Temperature Region for Diesel Exhaust Emission Control,” Sep. Purif. Technol., Vol. 162, pp. 127-133 (2016).
Huang, H.Y., Liu, X.C., Osaka, Y., Li, J., He, Z.H., Yang, X.X., Huhetaoli, Li, S.J. and Kobayashi, N., “Development of a Compact MnO2 Filter for Removal of SO2 from Diesel Vehicle Emissions,” RSC Adv., Vol. 7, pp. 18500-18507 (2017).
Jerndal, E., Mattisson, T. and Lyngfelt, A., “Thermal Analysis of Chemical-Looping Combustion,” Chem. Eng. Res. Des., Vol. 84, pp. 795-806 (2006).
Johansson, E., Mattisson, T., Lyngfelt, A. and Thunman, H., “Combustion of Syngas and Natural Gas in a 300 W Chemical-Looping Combustor,” Chem. Eng. Res. Des., Vol. 84, pp. 819-27 (2006).
Källén, M., Rydén, M., Lyngfelt, A. and Mattisson, T., “Chemical-Looping Combustion using Combined Iron/Manganese/Silicon Oxygen Carriers,” Appl. Energy, Vol. 157, pp. 330-337 (2015).
Ku, Y., Chiu, P.C., Wu, Y.L., Wu, H.C., Kuo, Y.L. and Tseng, Y.H., “Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol Air Qual. Res., Vol. 14, pp. 981-990 (2014).
Ku, Y. and Wu, H.C., “Chemical Looping Gasification of Charcoal with Iron-Based Oxygen Carriers in an Annular Dual-Tube Moving Bed Reactor,” Aerosol Air Qual. Res., Vol. 16, pp. 1093-1103 (2016).
Kuo, Y.L., Huang, W.C., Hsu, W.M., Tseng, Y.H. and Ku, Y., “Use of Spinel Nickel Aluminium Ferrite as Self-Supported Oxygen Carrier for Chemical Looping Hydrogen Generation Process,” Aerosol Air Qual. Res., Vol. 15, pp. 2700-2708 (2015).
Kuo, Y.L., Huang, W.C., Su, Y.M., Tseng, Y.H., Lee, H.Y. and Ku, Y., “A Facile Method for Sodium-Modified Fe2O3/Al2O3 Oxygen Carrier by an Air Atmospheric Pressure Plasma Jet for Chemical Looping Combustion Process,” Chem. Eng. J., Vol. 316, pp. 15-23 (2017).
Kuo, Y.L., Huang, W.C., Su, P.C., Tseng, Y.H., Lee, H.Y. and Ku, Y., “Redox Performance of Na-modified Fe2O3/Al2O3 with Syngas as Reducing Agent in Chemical Looping Combustion Process,” Chem. Eng. J., Vol. 334, pp. 2079-2087 (2018).
Larring, Y., Braley, C., Pishahang, M., Andreassen, K.A. and Bredesen,R., “Evaluation of a Mixed Fe-Mn Oxide System for Chemical Looping Combustion,” Energy Fuels, Vol. 29, pp. 3438-3445 (2015).
Li, F., Shafiefarhood, A. and Stewart, A., “Iron-Containing Mixed-Oxide Composites as Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU),” Fuel, Vol. 139, pp. 1-10 (2015).
Liang, B., Wang, J. and Parnas, R., “Manganese-Based Regenerable Sorbents for High Temperature H2S Removal,” Fuel, Vol. 107, pp. 539-546 (2013).
Liang, B., Zeng, B., Yue, H.R., Liu, C.J., Huang, T., Li, J., Zhao, B. and Zhang, M., “Desulfurization Behavior of Fe-Mn-Based Regenerable Sorbents for High-Temperature H2S Removal,” Energy Fuels, Vol. 29, pp. 1860-1867 (2015).
Liu, K.L., Bao, J.H., Chen, L.Y., Liu, F., Fan, Z. and Nikolic, H.S., “Evaluating the Effect of Inert Supports and Alkali Sodium on the Performance of Red Mud Oxygen Carrier in Chemical Looping Combustion,” Ind. Eng. Chem. Res, Vol. 55, pp. 8046-8057 (2016).
Lyngfelt, A., “Chemical-Looping Combustion of Solid Fuels-Status of Development,” Appl. Energy, Vol. 113, pp. 1869-1873 (2014).
Ma, L.P., Zhao, S.Q., Wang, D.D., Yang, J., Peng, Y.H. and Wang, L.C., “Sulfur-Looping Mechanism for the Two-Step Cyclic Process of Fluidized-Bed CO2 Capture and Phosphogypsum Thermal Decomposition Assisted by H2S,” Energy Fuels, Vol. 31, pp. 12582-12593 (2017).
Mattisson, T., Lyngfelt, A. and Leion, H., “Chemical-Looping with Oxygen Uncoupling for Combustion of Solid Fuels,” Int. J. Greenhouse Gas Control, Vol. 3, pp. 11-19 (2009).
Mendiara, T., Pérez-Astray, A., Adánez-Rubio, I., Izquierdo, M.T., Abad, A., Gayán, P.,de Diego, L.F., García-Labiano, F. and Adánez, J., “Comparative Study of Fuel-N and Tar Evolution in Chemical Looping Combustion of Biomass under Both iG-CLC and CLOU Modes,” Fuel, Vol. 236, pp. 598-607 (2019).
Mineral Commodity Summaries 2018: U.S. Geological Survey. ISBN 978-1-4113-4199-9.
Moghtaderi, B., Song, H., Shah, K., Doroodchi, E. and Wall, T., “Reactivity of Al2O3- or SiO2-Supported Cu-, Mn-, and Co-Based Oxygen Carriers for Chemical Looping Air Separation,” Energy Fuels, Vol. 28, pp. 1284-1294 (2014).
Muller, C.R. and Kierzkowska, A.M., “Development of Calcium-Based, Copper-Functionalised CO2 Sorbents to Integrate Chemical Looping Combustion into Calcium Looping,” Energy Environ. Sci., Vol. 5, pp. 6061-6065 (2012).
Osaka, Y., Kito, T., Kobayashi, N., Kurahara, S., Huang, H., Yuan, H. and He, Z., “Removal of Sulfur Dioxide from Diesel Exhaust Gases by Using Dry Desulfurization MnO2 Filter,” Sep. Purif. Technol., Vol. 150, pp. 80-85 (2015).
Pachler, R.F., Penthor, S., Mayer, K. and Hofbauer, H., “Fate of Sulfur in Chemical Looping Combustion of Gaseous Fuels using a Perovskite Oxygen Carrier,” Fuel, Vol. 241, pp. 432-441 (2019).
Patarin, J., Mathieu, Y., Tzanis, L., Soulard, M., Vierling, M. and Molière, M., “Adsorption of SOx by Oxide Materials: A Review,” Fuel Process. Technol., Vol. 114, pp. 81-100 (2013).
Qin, C.L., He, D., Shao, Y., Pu, G., Ran, J. and Zhang, L., “Understanding the Sulfation Pattern of CaO-Based Sorbents in a Novel Process for Sequential CO2 and SO2 Capture,” Ind. Eng. Chem. Res., Vol. 55, pp. 10251-10262 (2016).
Rydén, M., Källén, M., Jing, D., Hedayati, A., Mattisson, T. and Lyngfelt, A., “(Fe1-xMnx)TiyO3 Based Oxygen Carriers for Chemical-Looping Combustion and Chemical-Looping with Oxygen Uncoupling,” Energy Procedia, Vol. 51, pp.85-98 (2014).
Sakai, N., Chida, T., Tadaki, T. and Shimoiizaka, J., “Kinetics of Carbon Deposition on Nickel Metal by Decomposition of Carbon Monoxide,” J. Chem. Eng. Jpn., Vol. 18, pp. 199-204 (1985).
Shahrestani1, M.M. and Rahimi, A., “Evolution, Fields of Research, and Future of Chemical-Looping Combustion (CLC) process: A Review,” Environ. Eng. Res., Vol. 19, pp.299-308 (2014).
Shulman, A., Cleverstam, E., Mattisson, T. and Lyngfelt, A., “Chemical-Looping with Oxygen Uncoupling using Mn/Mg-Based Oxygen Carriers- Oxygen Release and Reactivity with Methane,” Fuel, Vol. 90, pp. 941-950 (2011).
Siriwardane, R.V., Ksepko, E., Tian, H., Simonyi, T. and Sciazko, M., “Effect of H2S on Chemical Looping Combustion of Coal-Derived Synthesis Gas over Fe-Mn Oxides Supported on Sepiolite, ZrO2, and Al2O3,” Energy Fuels, Vol. 26, pp. 2461-2472 (2012).
Susanto, H., Bahrin, D. and Subagjo, S., “Reduction of SO2 Emission Using CuO/γ-Al2O3 Adsorbent: Case Study on Combustion of Algae Biomass Having High Sulfur Content,” J. of Japan Ins. of Energy, Vol. 96, pp. 326-331 (2017).
Tseng, Y.H., Ma, J.L., Chiu, P.C., Kuo, Y.L. and Ku, Y., “Preparation of Composite Nickel-Iron Oxide as Highly Reactive Oxygen Carrier for Chemical-Looping Combustion Process,” J. Taiwan Inst. Chem. Eng., Vol. 45, pp. 174-179 (2014).
Veser, G., Bhavsar, S. and Tackett, B., “Evaluation of iron- and manganese-based mono- and mixed-metallic oxygen carriers for chemical looping combustion,” Fuel, Vol. 136, pp. 268-279 (2014).
Wang, B.W., Gao, C.C., Wang, W.S., Zhao, H.B. and Zheng, C.G., “Sulfur Evolution in Chemical Looping Combustion of Coal with MnFe2O4 Oxygen Carrier,” J. Environ. Sci., Vol. 26, pp. 1062-1070 (2014).
Weimer, A.W., Al-Shankit, I.A., Ehrhart, B.D., Ward, B.J., Bayon, A., Wallace, M.A., and Bader R., “Particle Design and Oxidation Kinetics of Iron-Manganese Oxide Redox Materials for Thermochemical Energy Storage,” Solar Energy, Vol. 183, pp. 17-29 (2019).
Wen, C.Y., Tamhankar, S.S. and Hasatani, M., “Kinetic Studies on the Reactions involved in the Hot Gas Desulfurization using a Regenerable Iron Oxide Sorbent-I: Reduction and Sulfidation of Iron Oxide,” Chem. Eng. Sci., Vol. 36, pp. 1181-1191 (1981).
Wen, C.Y., Tseng, S.C. and Tamhankar, S.S., “Kinetic Studies on the Reactions involved in the Hot Gas Desulfurization using a Regenerable Iron Oxide Sorbent-II: Reactions of Iron Sulfide with Oxygen and Sulfur Dioxide,” Chem. Eng. Sci., Vol. 36, pp. 1287-1294 (1981).
Xiao, B., Wang, X., Xu, T.T., Liu, S.M., Hu, Z.Q. and Chen. Z.H., “CuO Supported on Manganese Ore as an Oxygen Carrier for Chemical Looping with Oxygen Uncoupling (CLOU),” Chem. Eng. J., Vol. 343, pp. 340-350 (2018).
Yan, R., Wang, B.W., Lee, D.H., Liang, D.T., Zheng, Y., Zhao, H.B. and Zheng, C.G., “Thermodynamic Investigation of Carbon Deposition and Sulfur Evolution in Chemical Looping Combustion with Syngas,” Energy Fuels, Vol. 22, pp. 1012-1020 (2008).
Yu, Q.B., Xuan, Y.N., Qin, Q., Wang, K., Duan, W.J., Liu, K.J. and Zhang, P., “Selection of Desulfurizer and Control of Reaction Products on Flue-Gas Desulfurization Using Chemical-Looping Technology,” Energy Fuels, Vol. 32, pp. 889-900 (2018).
Zafara, Q., Abadb, A., Mattissonc, T., Geverta, B. and Strand, M., “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chem. Eng. Sci., Vol. 62, pp. 6556-6567 (2007).
Zhao, H.B., Wang, K. and Tian, X. “Sulfur Behavior in Chemical-Looping Combustion using a Copper Ore Oxygen Carrier,” Appl. Energy, Vol. 166, pp. 84-95 (2016).

無法下載圖示 全文公開日期 2024/07/13 (校內網路)
全文公開日期 2024/07/13 (校外網路)
全文公開日期 2024/07/13 (國家圖書館:臺灣博碩士論文系統)
QR CODE