簡易檢索 / 詳目顯示

研究生: 莊哲豪
Che-Hao Chuang
論文名稱: 陽極處理之低碳鋼熱浸鍍鋁於氯化鈉水溶液與高溫環境之腐蝕行為探討
The Study on Corrosion Behaviors of Hot-Dip Aluminized Coating Formed on Low Carbon Steel by Anodic Treatment in the Sodium Chloride Aqueous Solution and High-Temperature Oxidation
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 李志偉
Jyh-Wei Lee
葉宗洸
Tsung-Kuang Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 119
中文關鍵詞: 低碳鋼熱浸鍍鋁陽極處理鋁陽極氧化膜浸泡與電化學試驗高溫氧化試驗熱應力
外文關鍵詞: Mild steel, Hot-dipping, anodic treatment, anodic aluminum oxide, immersion and electrochemical tests, high-temperature oxidation, thermal stress
相關次數: 點閱:617下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗採用AISI 1005鋼作為基礎材料,將其熱浸鍍純鋁,再以陽極處理於其表面催生陽極氧化皮膜。此後於氯化鈉水溶液進行電化學試驗與浸泡試驗,以及高溫環境進行高溫氧化/熱腐蝕試驗,探討經二次表面改質後之鋼材,抗腐蝕性能否獲得提升之效用。
實驗結果顯示,陽極處理後之熱浸鍍鋁鋼材,因外層陽極氧化皮膜會受熱應力影響而剝落,故並不適用於850 oC高溫氧化/熱腐蝕環境。於氯化鈉水溶液進行電化學試驗與浸泡試驗後,以陽極處理時間60分鐘參數之抗蝕性優於低碳鋼和熱浸鍍純鋁鋼材。顯示低碳鋼經陽極處理之二次表面改質處理後,得以改善抗氯化鈉水溶液之腐蝕。


AISI 1005 steel was coated by hot-dipping into a molten pure aluminum, and then underwent an anodizing treatment to form an anodic oxide layer on the coating surface. The corrosion behavior of the modified aluminide steel was analyzed by immersion and electrochemical tests in NaCl aqueous solution and high-temperature oxidation and hot corrosion tests.
The results showed that the anodized aluminide steel can not used in high-temperature oxidation and hot corrosion environment due to the spallation of the anodic alumina oxide layer caused by the thermal stress. On the other hand, the immersion and electrochemical tests in NaCl aqueous solution revealed that corrosion resistance of the aluminide steel after anodizing treatment of 60 minutes is better than the mild steel and aluminide steel, indicating that the aluminide mild steel after anodizing treatment can enhance its corrosion resistance in NaCl aqueous solution.

第一章 前言 第二章 文獻回顧 2.1 熱浸鍍鋁 2.1.1 熱浸鍍鋁技術與應用 2.1.2 熱浸鍍鋁材結構及形成機制 2.1.3 熱浸鍍鋁材高溫擴散後之相變化 2.1.4 鋁化塗層之效用 2.1.5 鋁化塗層之厚度值 2.1.6 熱應力 2.2 鋁之陽極處理 2.2.1 陽極氧化膜 2.2.2 鋁之陽極氧化膜形成 2.2.3 陽極氧化膜之成形化學反應 2.2.4 封孔處理 2.3 腐蝕與電化學反應 2.3.1 電化學反應 2.3.2 電化學極化現象 2.3.3 混合電位(Mixed Potential) 2.3.4 電化學腐蝕 2.3.5 金屬防蝕保護 2.3.5.1 陰極防蝕 2.3.5.2 陽極防蝕保護 2.4 電化學腐蝕試驗 2.4.1 參考電極(Reference Electrode) 2.4.2 開路電位(Open Circuit Potential) 2.4.3 鐵弗斜率 2.5 浸泡試驗 第三章 實驗方法 3.1 實驗流程 3.2 實驗材料與試片準備 3.3 熱浸鍍鋁流程 3.3.1 試片前處理 3.3.2熱浸鍍鋁作業 3.3.3試片後處理 3.4 陽極處理流程 3.4.1 前處理作業 3.4.2 陽極處理作業 3.4.3 封孔作業 3.5 試片符號 3.6 高溫腐蝕試驗 3.6.1 測試條件 3.6.2 前處理流程 3.6.3 空氣氣氛下之高溫腐蝕 3.6.4 氯化鈉氣氛之熱腐蝕 3.6.5 實驗分析 3.7 電化學腐蝕試驗 3.7.1 測試條件 3.7.2 恆電位儀設備及實驗裝置 3.7.3 前處理流程 3.7.4 電化學量測 3.7.5 電化學結果分析 3.8 浸泡試驗 3.8.1 測試條件 3.8.2 浸泡實驗流程 3.8.3 浸泡試驗結果分析 3.9 實驗分析設備 第四章 實驗結果與討論 4.1 低碳鋼熱浸鍍鋁之陽極處理 4.1.1 低碳鋼熱浸鍍鋁 4.1.2 LC-HDA之陽極處理 4.1.3 陽極氧化膜之孔洞探討 4.1.3.1 鐵弗斜率之電位測試 4.1.3.2 孔洞形成 4.2 高溫腐蝕實驗 4.2.1 LC-HDA-A之高溫氧化 4.2.2 LC-HDA-A之高溫熱腐蝕 4.2.3 LC-HDA-A冷卻條件之作用 4.2.4 LC-HDA-A試片之陽極氧化鋁皮膜剝落機制 4.3 電化學腐蝕實驗 4.3.1 LC-HDA與LC-HDA-A之抗電化學腐蝕性 4.3.2 LC-HDA於NaCl水溶液之腐蝕 4.3.3 LC-HDA-A陽極氧化膜之電化學抗蝕性質 4.3.4 LC-HDA-A-60m於NaCl水溶液之腐蝕 4.4 浸泡實驗 4.4.1 全浸泡試驗 4.4.2 半浸泡試驗 4.4.3 氯化鈉蒸氣腐蝕試驗 第五章 結論 參考文獻 附 錄

1.王朝正、涂宗漢,“低碳鋼於氯化鈉之熱腐蝕機制及熱浸鋁之防制改善”,防蝕工程,第9卷,第4期,pp. 225 - 237 (1995)。
2.B. S. Phull, S. J. Pikul, and R. M. Kain, “Seawater Corrosivity Around the World: Result from Five Years of Testing”, Corrosion Testing in Natural Water: second Volume, ASTM STP 1300 (1997).
3.C. J. Wang, J. W. Lee, T. H. Twu, “Corrosion behaviors of low carbon steel, SUS310 and Fe–Mn–Al alloy with hot - dipped aluminum coatings in NaCl - induced hot corrosion”, Surface and Coatings Technology, pp. 37-43 (2003).
4.ASTM B580 - 79 (Reapproved 2000): Standard Specification for Anodic Oxide Coatings on Aluminum.
5.H. Masuda and M. Satoh, “Fabrication of Gold Nanodot Array Using Anodic Porous Aluminum as an Evaporation Mask”, Japanese Journal of Applied Physics, vol. 35, issue Part 2, No. 1B, pp. L126-L129 (1996).
6.W. Gao and G. Li, “The Development and Application of Hot-Dip Aluminum Coating”, Heat Treatment of Metals, Vol. 6, pp. 11-15 (1991).
7.日本複合材料協會,“熱浸鍍處理法”,表面技術雜誌,117期,pp. 135 (1975)。
8.鄭維仁、王朝正,“以EBSD觀察低碳鋼熱浸鋁矽塗層於高溫相變化之行爲”,防蝕工程,第22卷,第4期,pp. 287-294 (2008)。
9.L. N. Larikov, V. M. Falchenko, D. F. Polishebuk, V. R. Ryabov, A. V. Lonovskays, in: G. V. Samsonov(Ed.), “Protective Coatings on Metals”, vol. III, pp. 56 (1971).
10.鄭維仁、王朝正,“以EBSD觀察低碳鋼熱浸鋁化層的成長行為”,海峽兩岸材料腐蝕與防護研討會,pp. 1409-1418 (2008)。
11.洪舜立,“低碳鋼熱浸鍍鋁之研究”,國立台灣工業技術學院機械研究所,碩士學位論文 (1993)。
12.M. W. Chase, J. L. Curnutt, R. A. McDonlad and A. N. Syverud, J. Phys, “Stoichiometry and thermodynamics of metallurgical processes”, JANAF thermochemical tables, 7(1978)793.
13.S. Kobyashi and T. Yakou, “Control of intermetallic compound layers at interface between steel and Aluminum by diffusion-treatment”, Materials Science and Engineering A361, Vol. A338, pp. 44-53 (2002).
14.W. F. Smith, “Principles of Materials Science and Engineering”, 2Ed, McGraw-Hill Publishing Company, American, pp. 843-844 (1990).
15.G. Eggler, H. Vogel and H. J. Kaesche, Parket Metallogr, Vol.22, pp. 162-173 (1985).
16.A. Hrbek, “The Effect of Speed on the Thickness of the Coating Produced During Metallizing in Liquid Metals”, Metal Finishing Journal, pp. 298-302 (1961).
17.洪舜立、王朝正、林坤正,“田口實驗設計於低碳鋼熱浸純鋁之應用的研究”,防蝕工程,第11卷,第1期,pp. 1-7 (1997)。
18.陳鵬交,“430不銹鋼熱浸鍍鋁矽之高溫氧化”,國立台灣工業技術學院機械研究所,碩士學位論文 (2004)。
19.J. H. Sun, E. Chang, C. H. Chao, and M. J. Cheng, “The Spalling Modes and Degradation Mechanism of ZrO2-8wt%Y2O3/ CVD-Al2O3/ Ni-22Cr-10Al-1Y Thermal-Barrier Coatings”, Oxidation of Metals, Vol. 40, pp. 465-473 (1993).
20.W. H. Cubberly, “Metals Handbook”, American Society for Metals, 9th Ed.,Vol.5, pp. 333-347 (1983).
21.F. George, V. Vander, “Metallography Principle and Practice”, McGraw-Hill Book Company (1984).
22.H. Masuda, F. Hasegwa, and S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, J. Electrochem. Soc. vol. 144, pp. L127-L130 (1997).
23.G. E. Thompson, “Porous anodic alumina: fabrication, characterization andapplications”, Thin solid film, 297 (1997) 192.
24.O. Jessensky, F. Muller, and U. Gosele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Appl, Phys, Lett, Vol. 72, pp. 1173 (1998).
25.F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in AnodizedAluminum Oxide”, Chem. Matter. 10, 2470 (1998).
26.V. Lopez, E. Otero, E. Escudero, J. A. Gonzalez, “Nanostructural changes inporous anodic films on aluminum during aging”, Surface and Coatings Technology, pp. 34-41 (2002).
27.S. Wernick, R. Pinner, and P. G. Sheasby, “The surface treatment and finishing aluminum and its alloys”, ASM International, pp. 865-888 (1987).
28.M. J. Bartolome, V. Lopez, E. Escudero, G. Caruana, and J. A. Gonzalez, “Changesin the specific surface area of porous aluminium oxide films during sealing”, Surface and Coatings Technology, pp. 4530-4537 (2006).
29.L. Hao and B. R. Cheng, “Sealing Processes of Anodic Coatings-Past, Present, and Future”, Met. Finish, pp. 8-10 (2000).
30.B. R. Cheng and L. Hao, “Comparative Study of the Effects of Sealing Processes on the Wear Resistance and the Sealing Quality of Hard Anodic Coatings”, Met.Finish, pp. 48-55 (2000).
31.鮮祺振,“腐蝕理論與實驗”,徐氏基金會出版社 (1990 )。
32.Denny A. Jones, “Principles and prevention of corrosion”, Second Edition , Simon & Schuster / A Viacom Company (1996).
33.柯賢文,“腐蝕及其防制”,全華科技圖書公司,(1998)。
34.楊聰仁,“腐蝕電化學分析”,材料基礎實驗(二)腐蝕電化學實驗, pp. 1。
35.蔡文達,“陰極防蝕電化學應用基本原理”,防蝕工程,第2卷,第1期,pp. 1-11 (1988)。
36.W.S. Tait, “An introduction to electrochemical corrosion testing for practicing engineers and scientists”, Chapter 6, Racine, Wisconsin, (1994).
37.ASTM G31-72 (Reapproved 1999): Standard Practice for Laboratory Immersion Corrosion Testing of Metals.
38.ASTM G1-90 (Reapproved 1999): Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens.
39.CNS8886 [鹽水噴霧試驗法],經濟部標準檢驗局 (2002)。
40.O. Seri, M. Watanabe, and R. Shimpo, “ Electrochemical Characteristics of FeAl3 Intermetallic Compounds Phase in a Simulated Pit Solution”, 日本金屬學會, 66卷, pp. 1067-1072 (2002).

QR CODE