簡易檢索 / 詳目顯示

研究生: 黃梓桓
Tzu-Huan Huang
論文名稱: 二氧化碳合成苯胺基甲酸異丙酯之完整製程設計與分析
A Comprehensive Evaluation of the Isopropyl N-phenylcarbamate Production Process through Non-reductive conversion of CO2
指導教授: 李豪業
Hao-Yeh Lee
余柏毅
Bor-Yih Yu
口試委員: 錢義隆
I-Lung Chien
陳誠亮
Cheng-Liang Chen
汪進忠
Jin-Zhong Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 104
中文關鍵詞: 二氧化碳再利用與升級製程設計經濟分析製程設計環境評估可用功分析
外文關鍵詞: IPPhCM, Exergy analysis, CO2 utlization, Techno-economic analysis, process design, Environmental analysis
相關次數: 點閱:254下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳(CO2)轉化為有價值化學品已成為一個突出的研究領域。本研究嘗試嚴謹設計和全面分析製程,通過涉及CO2、2-丙醇(IPA)和苯胺(PHAM)的直接合成來生產苯胺基甲酸異丙酯(IPPhCM)。反應系統利用CeO2作為催化劑,2-氰基吡啶(2-CP)作為化學脫水劑。一般而言,這項工作以嚴謹的方式呈現了替代設計,並評估了各種提高系統效率的策略。通過深入分析,我們得出結論,設計成92%產率的IPPHCM,並結合隔牆塔和熱整合是最佳方案。相應的IPPHCM的最低售價(MRSP)為9.965美元/公斤(在15%的內部回報率下),每單位產品形成的二氧化碳排放量為+0.075公斤/公斤。然而,該過程的可用能效率僅為0.427。主要原因是形成了難以分離的混合物,其中包括幾種高溫物種,如Isopropyl picolinate(IPP)、Diisopropyl carbonate(DIPC)等。為了改善方案,我們通過在反應部分添加氨來進行了改造。這使得IPP和DIPC能夠轉化為有價值且可分離的副產品,即Picolinamide(2-PA)和Isopropyl carbamate(IPCM)。這種方案顯著提高了可用能效率至0.718,將MRSP降低至1.759美元/公斤,但對應地,CO2排放量增加至0.118公斤/公斤。根據這些結果,副產品的再生可以使整個過程更具吸引力和永續性。


    The conversion of carbon dioxide (CO2) into valuable chemicals has emerged as a prominent research field. This study attempts to uncover the rigorous design and comprehensive analysis of an innovative process that produces Isopropyl N-phenylcarbamate (IPPhCM) through direct synthesis involving CO2, 2-Propanol (IPA), and phenylamine (PHAM). The reaction system utilizes CeO2 as a catalyst and 2-Cyanopyridine (2-CP) as a chemical dehydrant. In general, this work presents alternative designs in a rigorous manner, and evaluates various strategies to improve the efficiency of the system. With thorough analysis, we have concluded that the configuration designed with a 92% yield of IPPhCM and incorporating both dividing-wall columns and direct heat integration is the best scenario. The corresponding minimum required selling price (MRSP) for IPPhCM is 9.965 USD/kg (at a 15% internal rate of return), and the amount of CO2 emission per unit amount of product formed is +0.075 kg/kg. However, overall exergy efficiency of this process is only 0.427. The main reason is the formation of mixtures that are difficult to separate, which include several high-temperature species like isopropyl picolinate (IPP), diisopropyl carbonate (DIPC), and others. To enhance the scheme, we retrofitted it by adding ammonia to the reaction section. This enables the conversion of IPP and DIPC into valuable and separable by-products, namely 2-picolinamide (2-PA) and isopropyl carbamate (IPCM). This arrangement significantly enhances the exergy efficiency to 0.718 and reduces the MRSP to 1.759 USD/kg, at the cost of a slight increase in CO2-e to 0.118 kg/kg. With these results, the regeneration of by-products can make the entire process more appealing and sustainable.

    誌謝 IV 摘要 V ABSTRACT VI Contents VII LIST OF FIGURES IX LIST OF TABLE X 1. Introduction 1 1.1 Research background 1 1.2 Literature review 3 1.3 Thesis organization 5 2. Overview 6 2.1 Physical properties 6 2.2 Development of kinetic model 11 3. Process development and evaluation 17 3.1 Design of reaction part 17 3.2 Design of separation part 24 4. Process analysis 26 4.1 Optimization 26 4.2 Techno-economic analysis 29 4.3 Environmental analysis 36 4.4 Exergy analysis 38 5. The potential improvement : Regeneration of by-product 43 6. Conclusion 47 Reference 48 Appendix 53 Section A1. Thermodynamic properties 53 Section A2: Development of kinetic expression 66 Section A3. Correlations for calculating capital costs 71 Section A4. Detailed settings for optimization 75 A4.1 Simulated annealing algorithm 75 A4.2 Detailed information regarding the optimization variables 77 Section A5. Details for simulation settings 80 Section A6 Other tables and figures 84

    1. Zhang, Z., S.-Y. Pan, H. Li, J. Cai, A.G. Olabi, E.J. Anthony, and V. Manovic, Recent advances in carbon dioxide utilization. Renewable and sustainable energy reviews, 2020. 125: p. 109799.
    2. Aresta, M., A. Dibenedetto, and A. Angelini, Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chemical reviews, 2014. 114(3): p. 1709-1742.
    3. Chauvy, R., N. Meunier, D. Thomas, and G. De Weireld, Selecting emerging CO2 utilization products for short-to mid-term deployment. Applied energy, 2019. 236: p. 662-680.
    4. Aresta, M., I. Karimi, and S. Kawi, An economy based on carbon dioxide and water. 2019: Springer.
    5. Tamura, M., M. Honda, Y. Nakagawa, and K. Tomishige, Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology & Biotechnology, 2014. 89(1): p. 19-33.
    6. Duarah, P., D. Haldar, V. Yadav, and M.K. Purkait, Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering, 2021. 9(6): p. 106394.
    7. Hao, C., S. Wang, M. Li, L. Kang, and X. Ma, Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis today, 2011. 160(1): p. 184-190.
    8. Ma, Z., U. Legrand, E. Pahija, J.R. Tavares, and D.C. Boffito, From CO2 to formic acid fuel cells. Industrial & Engineering Chemistry Research, 2020. 60(2): p. 803-815.
    9. Guo, M., F. Gu, L. Meng, Q. Liao, Z. Meng, and W. Liu, Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system. Separation and Purification Technology, 2022. 286: p. 120480.
    10. Marlin, D.S., E. Sarron, and Ó. Sigurbjörnsson, Process advantages of direct CO2 to methanol synthesis. Frontiers in chemistry, 2018. 6: p. 446.
    11. Choudhury, J., New strategies for CO2‐to‐methanol conversion. ChemCatChem, 2012. 4(5): p. 609-611.
    12. Ali, S.S., S.S. Ali, and N. Tabassum, A review on CO2 hydrogenation to ethanol: Reaction mechanism and experimental studies. Journal of Environmental Chemical Engineering, 2022. 10(1): p. 106962.
    13. Zheng, T., K. Jiang, and H. Wang, Recent advances in electrochemical CO2‐to‐CO conversion on heterogeneous catalysts. Advanced materials, 2018. 30(48): p. 1802066.
    14. Cannone, S.F., A. Lanzini, and M. Santarelli, A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies, 2021. 14(2): p. 387.
    15. Janke, C., M. Duyar, M. Hoskins, and R. Farrauto, Catalytic and adsorption studies for the hydrogenation of CO2 to methane. Applied Catalysis B: Environmental, 2014. 152: p. 184-191.
    16. Anastas, P.T., Meeting the challenges to sustainability through green chemistry. Green Chemistry, 2003. 5(2): p. G29-G34.
    17. Aresta, M. and A. Dibenedetto, Utilisation of CO 2 as a chemical feedstock: opportunities and challenges. Dalton transactions, 2007(28): p. 2975-2992.
    18. Razali, N.A.M., K.T. Lee, S. Bhatia, and A.R. Mohamed, Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: A review. Renewable and sustainable energy reviews, 2012. 16(7): p. 4951-4964.
    19. Tomishige, K., M. Tamura, and Y. Nakagawa, CO2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2‐Cyanopyridine. The Chemical Record, 2019. 19(7): p. 1354-1379.
    20. Honda, M., S. Sonehara, H. Yasuda, Y. Nakagawa, and K. Tomishige, Heterogeneous CeO 2 catalyst for the one-pot synthesis of organic carbamates from amines, CO 2 and alcohols. Green Chemistry, 2011. 13(12): p. 3406-3413.
    21. Honda, M., M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K.i. Fujimoto, and K. Tomishige, Ceria‐catalyzed conversion of carbon dioxide into dimethyl carbonate with 2‐cyanopyridine. ChemSusChem, 2013. 6(8): p. 1341-1344.
    22. Honda, M., M. Tamura, Y. Nakagawa, and K. Tomishige, Catalytic CO 2 conversion to organic carbonates with alcohols in combination with dehydration system. Catalysis Science & Technology, 2014. 4(9): p. 2830-2845.
    23. Honda, M., M. Tamura, K. Nakao, K. Suzuki, Y. Nakagawa, and K. Tomishige, Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catalysis, 2014. 4(6): p. 1893-1896.
    24. Gu, Y., K. Matsuda, A. Nakayama, M. Tamura, Y. Nakagawa, and K. Tomishige, Direct synthesis of alternating polycarbonates from CO2 and diols by using a catalyst system of CeO2 and 2-furonitrile. ACS Sustainable Chemistry & Engineering, 2019. 7(6): p. 6304-6315.
    25. Tamura, M., K. Ito, M. Honda, Y. Nakagawa, H. Sugimoto, and K. Tomishige, Direct copolymerization of CO2 and diols. Scientific reports, 2016. 6(1): p. 1-9.
    26. Lee, C.-T., C.-C. Tsai, P.-J. Wu, B.-Y. Yu, and S.-T. Lin, Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. Journal of CO2 Utilization, 2021. 53: p. 101722.
    27. Aresta, M., Carbon dioxide as chemical feedstock. 2010: John Wiley & Sons.
    28. Adams, P. and F.A. Baron, Esters of carbamic acid. Chemical Reviews, 1965. 65(5): p. 567-602.
    29. Fu, Z.-H. and Y. Ono, Synthesis of methyl N-phenyl carbamate by methoxycarbonylation of aniline with dimethyl carbonate using Pb compounds as catalysts. Journal of molecular catalysis, 1994. 91(3): p. 399-405.
    30. Elvers, B., Ullmann's encyclopedia of industrial chemistry. Vol. 17. 1991: Verlag Chemie Hoboken, NJ.
    31. Tamura, M., A. Miura, M. Honda, Y. Gu, Y. Nakagawa, and K. Tomishige, Direct Catalytic Synthesis of N‐Arylcarbamates from CO2, Anilines and Alcohols. ChemCatChem, 2018. 10(21): p. 4821-4825.
    32. Gu, Y., A. Miura, M. Tamura, Y. Nakagawa, and K. Tomishige, Highly efficient synthesis of alkyl N-arylcarbamates from CO2, anilines, and branched alcohols with a catalyst system of CeO2 and 2-cyanopyridine. ACS Sustainable Chemistry & Engineering, 2019. 7(19): p. 16795-16802.
    33. Lin, S.-T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research, 2002. 41(5): p. 899-913.
    34. Hsieh, C.-M., S.I. Sandler, and S.-T. Lin, Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilibria, 2010. 297(1): p. 90-97.
    35. Liang, H.-H., J.-Y. Li, L.-H. Wang, S.-T. Lin, and C.-M. Hsieh, Improvement to PR+ COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids. Industrial & Engineering Chemistry Research, 2019. 58(12): p. 5030-5040.
    36. Yu, B.-Y., P.-J. Wu, C.-C. Tsai, and S.-T. Lin, Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. Journal of CO2 Utilization, 2020. 41: p. 101254.
    37. Wang, L.-H., C.-M. Hsieh, and S.-T. Lin, Improved prediction of vapor pressure for pure liquids and solids from the PR+ COSMOSAC equation of state. Industrial & Engineering Chemistry Research, 2015. 54(41): p. 10115-10125.
    38. Hsieh, C.-M. and S.-T. Lin, First-principles predictions of vapor− liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations. Industrial & engineering chemistry research, 2009. 48(6): p. 3197-3205.
    39. Luyben, W.L., Principles and case studies of simultaneous design. 2012: John Wiley & Sons.
    40. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education.
    41. Gadalla, M.A., Z. Olujic, P.J. Jansens, M. Jobson, and R. Smith, Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environmental science & technology, 2005. 39(17): p. 6860-6870.
    42. Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, Optimization by simulated annealing. science, 1983. 220(4598): p. 671-680.
    43. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics, 1953. 21(6): p. 1087-1092.
    44. Cheng, J.-K., H.-Y. Lee, H.-P. Huang, and C.-C. Yu, Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(2): p. 188-196.
    45. Wang, Y., G. Bu, Y. Wang, T. Zhao, Z. Zhang, and Z. Zhu, Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Computers & Chemical Engineering, 2016. 95: p. 97-107.
    46. Ni, Y.-W. and J.D. Ward, Automatic design and optimization of column sequences and column stacking using a process simulation automation server. Industrial & Engineering Chemistry Research, 2018. 57(21): p. 7188-7200.
    47. Yang, X.-L. and J.D. Ward, Extractive distillation optimization using simulated annealing and a process simulation automation server. Industrial & Engineering Chemistry Research, 2018. 57(32): p. 11050-11060.
    48. Cui, Y., Z. Zhang, X. Shi, C. Guang, and J. Gao, Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation. Separation and Purification Technology, 2020. 236: p. 116303.
    49. BoroumandJazi, G., B. Rismanchi, and R. Saidur, A review on exergy analysis of industrial sector. Renewable and Sustainable Energy Reviews, 2013. 27: p. 198-203.
    50. Ahamed, J.U., R. Saidur, and H.H. Masjuki, A review on exergy analysis of vapor compression refrigeration system. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1593-1600.
    51. Saidur, R., M. Sattar, H. Masjuki, H. Abdessalam, and B. Shahruan, Energy and exergy analysis at the utility and commercial sectors of Malaysia. Energy Policy, 2007. 35(3): p. 1956-1966.
    52. Saidur, R., M. Sattar, H.H. Masjuki, S. Ahmed, and U. Hashim, An estimation of the energy and exergy efficiencies for the energy resources consumption in the transportation sector in Malaysia. Energy policy, 2007. 35(8): p. 4018-4026.
    53. Çamdali, Ü., A. Erişen, and F. Çelen, Energy and exergy analyses in a rotary burner with pre-calcinations in cement production. Energy conversion and management, 2004. 45(18-19): p. 3017-3031.
    54. Wang, J., Y. Dai, and L. Gao, Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry. Applied Energy, 2009. 86(6): p. 941-948.
    55. Madlool, N., R. Saidur, N. Rahim, M. Islam, and M. Hossian, An exergy analysis for cement industries: an overview. Renewable and Sustainable Energy Reviews, 2012. 16(1): p. 921-932.
    56. dos Santos, M.T. and S.W. Park, Exergy and sustainable development for chemical industry revisited, in Computer Aided Chemical Engineering. 2009, Elsevier. p. 1923-1928.
    57. Costa, M.M., R. Schaeffer, and E. Worrell, Exergy accounting of energy and materials flows in steel production systems. Energy, 2001. 26(4): p. 363-384.
    58. Al-Ghandoor, A., P. Phelan, R. Villalobos, and J. Jaber, Energy and exergy utilizations of the US manufacturing sector. Energy, 2010. 35(7): p. 3048-3065.
    59. Bandyopadhyay, R., O.F. Alkilde, and S. Upadhyayula, Applying pinch and exergy analysis for energy efficient design of diesel hydrotreating unit. Journal of Cleaner Production, 2019. 232: p. 337-349.
    60. Hinderink, A., F. Kerkhof, A. Lie, J.D.S. Arons, and H. Van Der Kooi, Exergy analysis with a flowsheeting simulator—I. Theory; calculating exergies of material streams. Chemical Engineering Science, 1996. 51(20): p. 4693-4700.
    61. Morris, D.R. and J. Szargut, Standard chemical exergy of some elements and compounds on the planet earth. Energy, 1986. 11(8): p. 733-755.
    62. Kotas, T.J., The exergy method of thermal plant analysis. 2012: Paragon Publishing.
    63. Dincer, I. and M.A. Rosen, Exergy: energy, environment and sustainable development. 2012: Newnes.
    64. Hajjaji, N., V. Renaudin, A. Houas, and M.N. Pons, Factorial design of experiment (DOE) for parametric exergetic investigation of a steam methane reforming process for hydrogen production. Chemical Engineering and Processing: Process Intensification, 2010. 49(5): p. 500-507.
    65. Brodyanski, V., M.V. Sorin, and P. Le Goff, The efficiency of industrial processes: exergy analysis and optimization. 1994.

    QR CODE