簡易檢索 / 詳目顯示

研究生: 謝蕙蔆
Hui-Ling Hsieh
論文名稱: 納米顆粒嵌入聚苯乙烯微粒之製備與特性
Synthesis and Characterization of Nanoparticles-Embedded Polystyrene Micro Particles
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
廖英志
Ying-Chih Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 52
中文關鍵詞: 碳包覆零價鐵聚苯乙烯微球三氧化二釤懸浮聚合
外文關鍵詞: iron-coating carbon, polystyrene microspheres, samarium(Ⅲ) oxide, suspension polymerization
相關次數: 點閱:304下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究係使用簡單且方便的兩個步驟,先製備不同比例的碳包覆零價鐵奈米粒子再合成聚苯乙烯、聚苯乙烯/三氧化二釤和聚苯乙烯/三氧化二釤/碳包覆零價鐵粒子。
利用化學還原法和水熱碳化法以不同比例的氯化鐵水合物和檸檬酸合成碳包覆零價鐵奈米粒子。結果表示,[氯化鐵水合物]:[檸檬酸] = 1:5是優於其他比例,因零價鐵奈米顆粒均勻地分散在碳基質,並且可以被磁鐵吸引。
在水的系統下,使用懸浮聚合法在不同濃度的引發劑下合成聚苯乙烯微球,且用光學顯微鏡和掃描電子顯微鏡來觀察聚苯乙烯微球的形態。我們最後選擇10毫克的2,2-偶氮二異丁腈,因為此條件下聚苯乙烯粒子有較多的數量和且粒徑分佈較窄。
最後用三種不同的材料:三氧化二釤,聚苯乙烯和碳包覆零價鐵粒子材料混合後,皆使用懸浮聚合法合成聚苯乙烯/三氧化二釤和聚苯乙烯/三氧化二釤/碳包覆零價鐵。在熱重量分析中,聚苯乙烯/三氧化二釤中的質量變化曲線表明,在450℃,聚苯乙烯完全被分解,最後聚苯乙烯/三氧化二釤的重量保持6.1%,歸因於沒有被氧化的釤。聚苯乙烯/三氧化二釤/碳包覆零價鐵的在光學顯微鏡圖像和掃描電子顯微鏡圖像之間的形態相似;其粒徑約20〜50微米之間。
根據研究結果,聚苯乙烯/三氧化二釤/碳包覆零價鐵顆粒因為粒徑小且特殊的性質應該是適合於癌症治療。


This work points to a relatively easy and convenient two-step process for the sequential synthesis of iron-coating carbon nanoparticles (Fe0@C) and of polystyrene (PS) microparticles with samarium(Ⅲ) oxide (Sm) and Fe0@C.
Fe0@C was synthesized by the chemical reduction method and hydrothermal carbonization method at different ratios of FeCl3•6H2O and citric acid. The result showed that the ratio of [FeCl3•6H2O]: [Citric acid] = 1: 5 was better than the others, since iron nanoparticles were homogeneously dispersed in carbon matrix and can be attracted by magnet.
PS microspheres were synthesized by suspension polymerization in water system. The morphology of polystyrene microspheres was observed using optical microscopic and scanning electron microscopic (SEM) studies. When 2,2-azobis-isobutyronitrile (AIBN) of 10 mg was chosen, the PS particles were large in number and were observed as a sphere with a narrow size distribution.
Materials of Sm, PS and Fe0@C were mixed to synthesize PS/Sm and PS/Sm/Fe0@C by polymerization. In thermal gravimetric analysis (TGA), the weight loss curve of PS/Sm showed that after 450 °C, the PS was burned off and PS/Sm weight remained 6.1 %, attributed to the Sm. The morphology of PS/Sm/Fe0@C was similar between optical microscopic images and SEM images. The PS/Sm/Fe0@C particles had a diameter between 20~50 μm, but the smaller particles with amorphous shape coexisted.

According to the research results, PS/Sm/Fe0@C particles should be suitable for using cancer therapy and deliver it to the tumors via its blood supply.

Abstract iii 摘要 v Acknowledgements vii Contents viii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Motivation 3 Chapter 2 Research Methodologies 4 2.1 Research design 4 2.2 Materials 5 2.3 Experimental Procedures 6 2.3.1 The preparation of iron-coating carbon (Fe0@C) 6 2.3.2 The preparation of polystyrene (PS) 8 2.3.3 The preparation of polystyrene with Samarium(Ⅲ) oxide (PS/Sm) 10 2.3.4 The preparation of PS/Sm/Fe0@C 12 2.4 Characterization and instruments 14 Chapter 3 Results and Discussion 15 3.1 Results of Iron-Coating Carbon (Fe0@C) 15 3.1.1 Morphology of Iron Coating Carbon (Fe0@C) 15 3.1.2 Characteristics of Iron-Coating Carbon (Fe0@C) by XRD 19 3.1.3 Characteristics of Iron-Coating Carbon (Fe0@C) by FT-IR 20 3.1.4 Characteristics of Iron-Coating Carbon (Fe0@C) by TGA 21 3.1.5 Magnetization of Iron-Coating Carbon (Fe0@C) Nanoparticle 23 3.2 The Results of synthesis of Polystyrene (PS) 24 3.2.1 Images of PS with different amounts of AIBN 24 3.2.2 Images of PS, PS/Sm, and PS/Sm/Fe0@C by optical microscopic 27 3.2.3 Morphology of Sm, PS, PS/Sm, and PS/Sm/Fe0@C by SEM 29 3.2.4 Characteristics of PS and PS/Sm by TGA 33 Chapter 4 Conclusions and Future Developments 35 4.1 Conclusions 35 4.2 The scope for future developments 37 List of Reference 38

1. Rudge, S.R., et al., Preparation, characterization, and performance of magnetic iron–carbon composite microparticles for chemotherapy. Biomaterials, 2000. 21(14): p. 1411-1420.
2. Xu, H., et al., Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials, 2011. 32(35): p. 9364-73.
3. Wang, C., L. Cheng, and Z. Liu, Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials, 2011. 32(4): p. 1110-20.
4. Yang, K., et al., The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials, 2012. 33(7): p. 2206-14.
5. Cheng, L., et al., Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials, 2012. 33(7): p. 2215-22.
6. Lewington, V.J., Targeted radionuclide therapy for neuroendocrine tumours. Endocrine-Related Cancer, 2003. 10: p. 497-501.
7. Gorsd, M.N., M.N. Blanco, and L.R. Pizzio, Synthesis of Polystyrene Microspheres to be Used as Template in the Preparation of Hollow Spherical Materials: Study of the Operative Variables. Procedia Materials Science, 2012. 1: p. 432-438.
8. R. YUVAKKUMAR, V.E., V. RAJENDRAN, N. KANNAN, Preparation and characterization of zero valent iron nano particles. Digest Journal of Nanomaterials and Biostructures, 2011. 6: p. 1771-1776.
9. Wu, W., Q. He, and C. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett, 2008. 3(11): p. 397-415.
10. Zhu, W., et al., Effect of the thermodynamic properties of W/O microemulsions on samarium oxide nanoparticle size. J Colloid Interface Sci, 2009. 340(1): p. 119-25.

QR CODE