簡易檢索 / 詳目顯示

研究生: 黃欽正
Chen-Jenq Huang
論文名稱: 液壓缸及氣壓致動器運動之阻尼係數探討
Damping Coefficients Study on Hydraulic Cylinder and Pneumatic Actuator Motion
指導教授: 林 榮 慶
Zone-Ching Lin
口試委員: 王國雄
none
成維華
none
施明璋
none
李安謙
none
董必正
none
黃佑民
You-Min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 94
中文關鍵詞: 液壓缸氣壓致動器阻尼係數逆解模式差分模式拉氏轉換法
外文關鍵詞: hydraulic cylinder, pneumatic actuator, damping coefficient, inverse model, difference model, Laplace transform method
相關次數: 點閱:175下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究的主題是液壓缸及氣壓致動器運動之阻尼係數的估算,由本文研究提出的計算阻尼係數的方法共有三種,包括逆解模式、差分模式與應用拉氏轉換法的模式,配合實驗數據,推導得到計算阻尼係數的公式。
    本文研究的氣壓缸運動時,出現黏滯滑動現象,與本文研究的液壓缸運動不同;本文提出逆解模式與差分模式,計算液壓缸運動之阻尼係數,而本文的氣壓缸運動時,除了逆解模式與差分模式外,再提出應用拉氏轉換法的模式,配合實驗數據,推導得到計算阻尼係數的公式。本文的氣壓馬達轉動也應用逆解模式與差分模式以及應用拉氏轉換法的模式來計算氣壓馬達轉動之阻尼係數。
    本文研究的主要目的是提出一逆解模式,對於本文所探討的液壓缸運動實驗與氣壓缸運動實驗中,將量測得到的實驗活塞位移與實驗力,利用本文所提出的逆解模式,疊代計算得到的活塞位移,如果滿足位移誤差函數的收斂法則時,再配合Tikhonov正則化法進行疊代計算的最佳化,並採用Levenberg-Marquardt法的觀念,調整平滑因子及進行靈敏度分析,可以同時計算得到合理的阻尼係數及活塞速度。
    而差分模式在液壓缸運動實驗與氣壓缸運動實驗中,當活塞速度不為零時,估算得到的阻尼係數可以為合理的有限值,與逆解模式計算得到的阻尼係數相比較,其值差異不大。但是當活塞速度接近零或等於零時,估算得到的阻尼係數卻是很大或是無窮大。而逆解模式估算的阻尼係數係經由疊代計算,滿足位移收斂法則與疊代計算最佳化後,同時估算得到阻尼係數與活塞速度。故即使氣壓缸活塞發生黏滯現象,逆解模式仍然可以估算得到可接受的阻尼係數。
    在氣壓馬達轉動實驗中,將量測得到的實驗角速度與實驗力矩,利用本文所提出的逆解模式,疊代計算得到的角速度,如果滿足角速度誤差函數的收斂法則時,同樣地進行疊代計算的最佳化及靈敏度分析,也可以同時計算得到合理的阻尼係數及角位移。同樣地,差分模式在氣壓馬達轉動實驗中,分別計算得到合理的阻尼係數及角位移,比較兩種模式計算得到的阻尼係數及角位移,其值差異都不大。
    此外本文再應用拉氏轉換法配合實驗數據,分別推導得到氣壓缸運動與氣壓馬達轉動的阻尼係數的計算公式,經由疊代計算得到的氣壓缸運動的阻尼係數與氣壓馬達轉動的阻尼係數。由分析結果可知,由逆解模式、差分模式與拉氏轉換法推導計算得到的阻尼係數,這三種阻尼係數的值其差異為可接受,且拉氏轉換法推導計算得到之結果不受時間步距大小的影響,然而拉氏轉換法無法直接計算得到氣壓缸運動的活塞速度或氣壓馬達轉動的角位移。
    當氣壓缸活塞的位移不變,即發生黏滯現象,此時的活塞速度為零時,應用拉氏轉換法推導得到阻尼係數的計算公式,仍然可以進行疊代,計算得到合理的阻尼係數。又應用拉氏轉換法推導計算得到的阻尼係數具有唯一解,與逆解模式疊代計算得到的阻尼係數比較,兩者差異不大,可以證明本文提出的逆解模式疊代計算得到的阻尼係數是合理的。
    本文提出之逆解模式的優點是經由疊代計算可以得到液壓缸運動實驗、氣壓缸運動實驗與氣壓馬達轉動實驗之阻尼係數,同時也得到液壓缸運動實驗、氣壓缸運動實驗之活塞速度或氣壓馬達轉動實驗的角位移。綜合分析結果,本文所提出的逆解模式對於液壓缸運動實驗、氣壓缸運動實驗與氣壓馬達轉動實驗均可合理計算得到其阻尼係數。


    The subject of this study includes the estimation of damping coefficients for hydraulic cylinder and pneumatic actuator motion. The paper studies three methods, including the proposed inverse model, finite difference model and the application of Laplace transform method to deduce the equations for calculation of damping coefficients.
    This study on the pneumatic cylinder motion with stick-slip is different from the hydraulic cylinder motion. The proposed inverse model and finite difference model are used to calculate the damping coefficients of hydraulic cylinder motion. Beside this two models, this paper proposes the application of Laplace transform method to calculate the damping coefficients of pneumatic actuator motion.
    The main purpose of this study is to propose an inverse model. In the hydraulic cylinder motion experiment and the pneumatic cylinder motion experiment investigated by this paper, the measured experimental piston displacement and experimental force are employed to find out the piston displacement by using inverse model and iteration calculation proposed by this paper. If the piston displacement satisfies the convergence principle of the error function of displacement, it can carry out the optimization of iteration calculation by using Tikhonov regularization method. Then the sensitivity analysis is made and the smoothing parameter is modified by using the concept of Levenberg-Marquardt method. In addition, reasonable damping coefficients and piston velocity can be calculated at the same time.
    For the use of difference model in hydraulic cylinder motion experiment and pneumatic cylinder motion experiment, when the piston velocity is not zero, the estimated damping coefficient can be a reasonable limited value. Comparing it to the damping coefficient calculated by inverse model, the difference is not significant. However, when the piston velocity is close to zero or equal to zero, the estimated damping coefficient will be very great or infinitely great. The damping coefficient estimated by inverse model has gone through iteration calculation. After the damping coefficient satisfies the convergence principle of displacement and goes through the optimization of iteration calculation, the damping coefficient and piston velocity can be estimated at the same time. Therefore, even though there is sticking phenomenon occurred to the piston of pneumatic cylinder, an acceptable damping coefficient could still be estimated by inverse model.
    In the air motor rotation experiment, the measured experimental angular velocity and experimental torque can be employed to calculate the angular velocity by using the inverse model and iteration calculation proposed by this paper. If it satisfies the convergence principle of the error function of angular velocity, the optimization of iteration calculation and sensitivity analysis can likewise be conducted. Meanwhile, reasonable damping coefficient and angular displacement can also be calculated. Similarly, by using difference model in the air motor rotation experiment, reasonable damping coefficient and angular displacement can be calculated respectively. Comparing the damping coefficients and angular displacements calculated by these two models, the differences in between are not great.
    Besides, the paper applies Laplace transform method to match with the experimental data for deducting a formula for calculation of the damping coefficients of hydraulic cylinder motion and air motor rotation. After iteration calculation, the damping coefficient of hydraulic cylinder motion and the damping coefficient of air motor rotation are obtained. As known from the analytic results, the difference among the three damping coefficients calculated by inverse model, difference model and the deduction of Laplace transform method is acceptable. Besides, the result calculated by the deduction of Laplace transform method is not affected by the magnitude of time step. Nevertheless, Laplace transform method cannot directly calculate the piston velocity of hydraulic cylinder motion or the angular displacement of air motor rotation.
    When the displacement of the piston of hydraulic cylinder remains unchanged, sticking phenomenon would occur immediately. During this time, the piston velocity is zero. The formula for calculation of damping coefficient deduced from Laplace transform method can still undergo iteration calculation to acquire a reasonable damping coefficient. In addition, the damping coefficient calculated by the deduction of Laplace transform method is the sole solution. The difference between such solution and the damping coefficient acquired by the iteration calculation of inverse model is not great. Thus, it is proved that the damping coefficient acquired by the iteration calculation of inverse model is reasonable.
    The use of inverse model proposed by this paper has the advantage that after it has gone through iteration calculation, the damping coefficients for hydraulic cylinder motion experiment, pneumatic cylinder motion experiment, and air motor rotation experiment can be obtained. At the same time, the piston velocities for hydraulic cylinder motion experiment and pneumatic cylinder motion experiment, or the angular displacement for air motor rotation experiment can be acquired. Synthesizing the above analytic results, the use of inverse model, as proposed by this paper, can reasonably calculate the damping coefficients for hydraulic cylinder motion experiment, pneumatic cylinder motion experiment, and air motor rotation experiment.

    目 錄 中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅲ 誌謝………………………………………………………………Ⅴ 目錄………………………………………………………………Ⅵ 圖目錄……………………………………………………………Ⅹ 表目錄……………………………………………………………ⅩⅢ 符號索引…………………………………………………………ⅩⅣ 第一章 緒論…………………………………………………………1 1.1 研究動機與目的 ………………………………………………1 1.2 文獻回顧 ………………………………………………………4 1.2.1有關工程逆解問題方面之文獻………………………………4 1.2.2有關液壓缸運動方面之文獻…………………………………5 1.2.3有關氣壓缸運動方面之文獻…………………………………5 1.2.4有關氣壓馬達轉動控制方面之文獻…………………………6 1.2.5有關摩擦力之文獻 …………………………………………7 1.3本文架構…………………………………………………………9 第二章 實驗規劃 …………………………………………………11 2.1液壓缸運動實驗 ………………………………………………11 2.2氣壓缸運動實驗 ………………………………………………13 2.3 氣壓馬達轉動實驗……………………………………………15 第三章 逆解模式的建立 …………………………………………20 3.1液壓缸運動實驗和氣壓缸運動實驗之逆解模式 ……………20 3.2氣壓馬達轉動實驗之逆解模式 ………………………………26 第四章 液壓缸運動之阻尼係數探討 …………………………32 4.1前言 ……………………………………………………………32 4.2液壓缸運動實驗的數據分析 …………………………………32 4.3逆解模式計算液壓缸運動實驗之阻尼係數與活塞速度的分析………… ………… ……………………………………………33 4.4差分模式計算液壓缸運動實驗之活塞速度與逆解模式的差異分析………………………… …………… …………………………35 4.5差分模式計算液壓缸運動實驗之阻尼係數與逆解模式的差異分析………………………………… …………… …………………36 4.6 逆解模式計算液壓缸運動之阻尼力的分析 ……… ………38 4.7液壓缸運動實驗之阻尼係數及相關問題探討之重要結論………………… …… ……… ……… …… …… …… … 41 第五章 氣壓缸運動之阻尼係數探討 ………… ………… ……47 5.1前言…… ………………………………………………………47 5.2氣壓缸運動實驗的數據分析 …………………………………48 5.3逆解模式計算氣壓缸運動實驗之阻尼係數與活塞速度的分析…………… ……… …… …… ……… …… …… …… …48 5.4前向差分模式計算氣壓缸運動實驗之活塞速度與逆解模式的差異分析……………………………… …………………… …………50 5.5前向差分模式計算氣壓缸運動實驗之阻尼係數與逆解模式的差異分析……………………………………………… ……… ………52 5.6拉氏轉換法計算氣壓缸運動實驗之阻尼係數與阻尼力的分析………………… ……… …… …… ……… ……… ………54 5.7氣壓缸運動實驗之阻尼係數及相關問題探討之重要結論………………………… ……… …… …… ……… …… …60 第六章 氣壓馬達轉動之阻尼係數探討……………… … … …67 6.1前言………………………… …… …… …… … … … …67 6.2逆解模式計算氣壓馬達轉動之阻尼係數與角位移的分析……………………………………………………… ……… …68 6.3 前向差分模式計算氣壓馬達轉動實驗之阻尼係數與逆解模式的差異分析……………… …… …… …… …… …… …… … …70 6.4逆解模式計算得到的阻尼力矩及實驗扭力矩的差異分析………………………………… …… …… …… …… … …71 6.5前向差分模式計算氣壓馬達轉動實驗之角位移與逆解模式的差異分析……………………………………………………… …… …73 6.6拉氏轉換法計算氣壓馬達轉動實驗之阻尼係數的分析………………………………… …… …… … …… …… …74 6.7拉氏轉換法計算氣壓馬達轉動實驗之角位移與逆解模式的差異分析………………………………… …… … …… ……… … …75 6.8氣壓馬達轉動實驗之阻尼係數及相關問題探討之重要結論………………………………… …… ……… … …… … …77 第七章 結論 ………………………………………………………85 參考文獻…………… ………… …………… ………… ………88 作者簡介………………………………… ……… …… …… …93 國立台灣科技大學博碩士論文授權書…… …… …… …… …94

    參考文獻
    1.Tikhonov, A. N. and V. Y. Arsenin, ”Solution of Ill-posed Problems,” V. H. Winston and Sons, Washington, D.C. (1977).
    2.Kubo, S., K. Fukumoto and K. Ohji, "An application of the mollification method to estimation of governing equation of field problem from noisy observations", ASME 2nd Int. Conference on Inverse Problems in Engineering: Theory and Practice, pp.245-252 (1998).
    3.Zantev, V. K., V. F. Markov and V. P. Skugarev, “Application of Inverse Heat Conduction problems in Experimental Investigations of Heat Exchange of Casting Units of Furnaces, “ Journal of Engineering Physics, Vol. 45, No. 5, pp.1318-1322(1983).
    4.Huang, C. H., T. M. Ju and A. A. Tseng, “The Estimate of Surface Thermal Behavior of the Working Roll in Hot Rolling Process,” Int. J. Heat Mass Transfer. Vol. 38, No. 6, pp. 1019-1031(1995).
    5.Lin, J., “Inverse Estimation of the Tool-Work Interface Temperature in End Milling,” International Journal of Machine Tools & Manufacture Vol. 35, No. 5, pp. 751-760(1995).
    6.Park, K. C. and C. A. Felippa, “A Flexibility-based Inverse Algorithm For Identification of Substructural and Joint properties,” AMD-Vol. 228, Computational Methods for Solution of Inverse Problems in Mechanics, ASME, pp.11-22(1998).
    7.Alifanov, O. M., “Solution of an Inverse Problem of Heat Conduction by iteration method,” Journal of Eng. Phys., Vol. 26, No. 4, pp. 471-476(1974).
    8.Trujillo, D. M., “Application of Dynamic Programming to the General Inverse Problem,” International Journal for Numerical Methods in Engineering, Vol. 12, pp. 613-624(1978).
    9.Trujillo, D. M. and H. R. Busby, Practical Inverse Analysis in Engineering, CRC Press, Boca Raton, New York(1997).
    10.Beck, J. V., “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Dec., Vol. 7, pp. 170-178(1968).
    11.Beck J. V., B. Blackwell and S. A. Haji, “Comparison of Some Inverse Heat Conduction Methods Using Experimental Data,” International Journal of Heat and Mass Transfer, Vol. 39, No. 17, pp. 3649-3657(1996).
    12.Blanc, G., J. V. Beck and M. Raynaud, “Solution of the Inverse Heat Conduction Problem with a Time-Variable Number of Future Temperatures,” Numerical Heat Transfer, Part B, Vol. 32, pp. 437-451(1997).
    13.Kishimoto, K., T. Shibuya, H. Inoue and H. Shinbo, “Inverse Analysis Related to Stress Separation in Thermoelastic Stress Analysis,” JSME International Journal. Series A, Solid Mechanics and Material Engineering, Vol. 32, pp. 437-451(1997).
    14.Huang, C. H., M. N. Ozisik and B. Sawaf, “Conjugate Gradient Method for Determining Unknown Contact Conductance During Metal Casting,” Int. J. Heat Mass Transfer, Vol. 25, No 7, pp. 1799-1786(1992).
    15.Faurholdt, T.G., “Inverse Modelling of Constitutive Parameters for Elastoplastic Problems”, Journal of Strain Analysis, Vol.35, No.6, pp.471-478 (2000).
    16.Yao, B., B. Fanping and T.C. George Chiu, “Non-linear Adaptive Robust Control of Electro-Hydraulic System Driven by Double-Rod Actuators,” INT. J. Control, Vol.74, No.8, pp.761-775 (2001).
    17.Richard, D. A., W. M. Timothy and l W. B. Randa, “ Application of an Optimal Control Synthesis Strategy to an Electro-Hydraulic Positioning System,” Trans. ASME, J. Dynamic Systems, Measurement, and Control, Vol.123, pp.377-384(2001).
    18.Richard, E. and C. V. Jean, “Mathematical Analysis of Stability and Drift Behavior of Hydraulic Cylinders Driven by a Servovalve,” Trans. ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.124, pp.206-213(2002).
    19.Bowden, F. P. and D. Tabor, “Friction-An Introduction to Tribology,” Anchor Press/Doubleday, New York; pp.68-71.
    20.Xavier, B., S. Sylvie and S. Serge , “Simulation and Experimental Study of the Partial Equilibrium of An Electro-pneumatic Positioning System, Cause of the Sticking and Restarting Phenomenon,” Fluid Power Forth JHPS International Symposium, pp.125-130 (1999).
    21.Toshinori, F. and R. T. Luis, “Stick-slip Motion in Pneumatic Cylinders Driven by Meter-out Circuit,” Fluid Power Forth JHPS International Symposium, pp.131-136 (1999).
    22.Richer, E. and H. Yildirim, “A High Performance Pneumatic Force Actuator System: Part I-Nonlinear Mathematical Model,” Trans. ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.122, pp.416-425(2000).
    23.Richer, E. and H. Yildirim, “A High Performance Pneumatic Force Actuator System: Part II-Nonlinear Mathematical Model,” Trans. ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.122, pp.426-435(2000).
    24.Choi, S. H., C. O. Lee, and H. S. Cho, “Friction Compensation Control of an Electropneumatic Servovalve by Using an Evolutionary Algorithm,” Proc. Instn. Mech. Engineers, Vol.214 Part I, pp.173-184 (2000).
    25.Tillett, N. D., N. D. Vaughan, and A. Bowyer, “A Non-linear Model of Rotary Pneumatic Servo System,” Proc. Instn. Mech. Engineers, Vol. 211, No. 1, pp.123-133 (1997).
    26.Tokhi M. O., M. Al-Miskiry, and M. Brisland, “Real-time control of air motors using a pneumatic H-bridge,” Control Engineering Practice, Volume 9, Issue 4, pp.449-457 (2001).
    27.Chapra, S.C., and R.P. Canale, “Numerical methods for engineers: with personal computer applications,” McGraw-Hill, New York, (1985).
    28.Andersson, S., S. Anders, and B. Stefan, “Friction models for sliding dry, boundary and mixed lubricated contacts,” Tribology International, Vol. 40, pp.580-587(2007).
    29.Alleyne, A., and R. Liu, “Nonlinear Force/Pressure Tracking of an Electro-Hydraulic Actuator,” Trans. ASME, Journal of Dynamic Systems, Measurement, and Control, Vol.122, pp.232-237(2000)
    30.Younkin, G. W., Industrial Servo Control Systems: Fundamentals and Application, Marcel Dekker, New York(1996).
    31.Parr, A., Hydraulics and Pneumatics - A technician’s and engineer’s guide, Butterworth Heinemann, Oxford(1999).
    32.Harman T. L., J. Dabney, and N. Richert, Advanced Engineering Mathematics with Matlab, Brooks/Cole, Pacific Grove, U.S.A.(2000).
    33.Lin, Z. C. and C. J. Huang, “Investigation of damping coefficient of air motor rotation experiment”, JSME, Journal of System Design and Dynamics, Vol.2, No.4(2008).
    34.Lin, Z. C. and C. J. Huang , “Estimation of damping coefficient for a pneumatic cylinder motion experiment”, Journal of the Chinese Society of Mechanical Engineers, Vol.28, No.5, pp.459-469 (2007).
    35.Lin, Z. C. and C. J. Huang, “Study of estimation of damping coefficient and angular displacement for air motor rotation experiment”, Journal of the Chinese Society of Mechanical Engineers, Vol.29, No.4, pp.271-280 (2008).

    無法下載圖示 全文公開日期 2013/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE