簡易檢索 / 詳目顯示

研究生: 余安棣
An-dih Yu
論文名稱: 製備具高度方向性之Bacteriorhodopsin生物光電晶片
Preparation of Unidirectional Bacteriorhodopsin Photoelectric Biochip
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 戴龑
Yian Tai
林保宏
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 生物光電晶片Bacteriorhodopsin
外文關鍵詞: Photoelectric biochip, Unidirectional immobilization
相關次數: 點閱:335下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究嘗試以biotin選擇性地對Halobacterium salinarium嗜鹽菌紫色細胞膜(purple membrane, PM)胞內外兩側外露之殘基進行修飾鍵結。之後將修飾完成的PM以biotin-strep(avidin)生物親和性吸附方式達成於ITO導電玻璃表面上高度方向性之固定化,製成光電生物感測晶片。利用PM內跨膜之細菌視紫質蛋白(bacteriorhodopsin, BR)受光激發後,會將一質子由胞內側推動至胞外側的光敏感特性,可量測晶片所產生之光電流。首先進行最適化晶片製程的探討,發現以EC端定向之晶片以1.5 mg/mL biotin-PM,經10小時修飾後,可得最佳光電流訊號;CP端定向時則以3 mg/mL之biotin-PM濃度,同樣10小時後最佳。

EC 端定向的晶片在pH=5.75時,有光電訊號極性反轉之現象發生。之後,以QCM感測器分析,QCM晶片頻率的線性下降可證實了多層膜塗覆的成功。最後並藉掃描式電子顯微鏡與原子力顯微鏡觀察其表面形態,確定晶片上具有我們所設計的塗覆。

此研究可應用於製備薄型光感測器或光電開關,並創造未來發展生物性二極體的契機。


The cytoplasmic (CP) and extracellular (EC) sides of purple membrane (PM) from Halobacterium salinarium were each selectively conjugated with biotin for directional immobilization on ITO glass via biotin-streptavidin affinity interactions. The photocurrents of the PM-coated ITO chips, which were produced due to a proton gradient across PM generated by illuminated bacteriorhodopsin, a light-driven proton pump, were studied to investigate the optimal fabrication processes, evaluate the performances of those two differently oriented PM chips, and develop novel photocell systems. The results showed that the best photocurrent responses were achieved when 1.5 mg/mL and 3 mg/mL biotin-conjugated PM were used to coat streptavidin-coated ITO glass for 10 h to prepare the chips with the EC-side and CP-side facing ITO, respectively. In addition, reversion of the photocurrent polarity was observed at pH 5.75 using the chips with the PM EC-side facing ITO. Multilayer fabrication of unidirectionally oriented PM chips was successfully achieved using the developed side-selective biotin conjugation of PM according to the linear frequency decrease responses of layer-by-layer coated QCM chips. Finally, the fabrication of PM on ITO was confirmed by examining the morphology changes of each differently fabricated ITO glass. This study will benefit the future development of PM-film based photosensors, photoswitches, or photodiodes.

中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 誌謝………………………………………………………………………………III 目錄………………………………………………………………………………IV 表目錄與圖目錄…………………………………………………………………VII 第一章 緒論 …………………………………………………………………1 第二章 文獻回顧 ……………………………………………………………2 2-1 Halobacterium salinarium 與BR …………………………………2 2-1-1 H. salinarium嗜鹽古菌 ……………………………………………2 2-1-2 細菌視紫質 ( BR) …………………………………………………3 2-1-3 BR的光循環 ……………………………………………………………6 2-2 PM 固定化………………………………………………………………8 2-2-1 PM的親和性鍵結和固定化 ……………………………………………9 PM的生物親和性固定化之應用 ………………………………………10 2-3 探討以氙燈和雷射光源激發產生之BR光電流訊號的及其分子 機構 ……………………………………………………………………13 2-4 以蛋白質水解酶papain水解PM ………………………………………18 2-5 BR的應用 ………………………………………………………………19 2-5-1 以BR製備三維光學記憶體 ……………………………………………20 BR之分支光循環 ………………………………………………………21 分支光循環應用於三維光學記憶裝置 ………………………………22 2-5-2 以BR薄膜製備投影顯示器 ……………………………………………25 液晶空間光調變器 (LCSLM) …………………………………………25 以BR製備光定址式空間光調變器 ……………………………………27 BR之光致變色性 ……………………………………………………30 以BR之光致變色性製備空間光調變器 ………………………………33 第三章 實驗…………………………………………………………………36 3-1 實驗目的 ………………………………………………………………36 3-2 流程說明 ………………………………………………………………38 3-3 實驗藥品及材料 ………………………………………………………39 3-4 實驗儀器 ………………………………………………………………41 3-5 藥品配置 ………………………………………………………………43 3-6 實驗步驟 ………………………………………………………………45 3-6-1 嗜鹽菌之培養與PM 之純化 …………………………………………45 嗜鹽菌之培養 …………………………………………………………45 PM之純化 ………………………………………………………………47 BR濃度的定量 …………………………………………………………48 3-6-2 PM之biotin修飾 ………………………………………………………48 製備biotin-LC-LC-native PM (EC) ………………………………48 製備biotin-PEO-PEO-G241C PM (EC、CP) …………………………49 以水解酶水解G241C PM並以電泳分析水解程度 ……………………49 以水解酶水解native PM………………………………………………49 製備水解酶水解之native PM-PEO-PEO-biotin (CP) ……………50 3-6-3 以Streptavidin Alexa Flour® 647 conjugate 螢光分子分析帶有biotin之PM ………………………………………50 3-6-4 以倒立式螢光顯微鏡偵測螢光分子 …………………………………51 3-6-5 以SAv/biotin 親和性3-3 實驗吸附biotin-PM於ITO 晶片上之方向性固定化 ………………………………………………51 3-6-6 以水滴測試表面平均接觸角 …………………………………………51 3-6-7 光電訊號量測 …………………………………………………………52 3-6-8 以QCM分析製備多層膜(muti-layers)的可行性 ……………………53 動態QCM分析多層PM膜之塗覆…………………………………………53 靜態QCM多層PM膜塗覆之量測…………………………………………54 QCM靜態實驗(EC端向下)………………………………………………54 QCM靜態實驗(CP端向下)………………………………………………55 3-6-9 使用SEM觀測晶片表面型態……………………………………………55 3-6-10 多層PM膜光電晶片製備(CP面朝向ITO) ……………………………56 3-6-11 多層PM膜光電晶片製備(EC面朝向ITO) ……………………………56 第四章 結果與討論…………………………………………………………57 4-1 以倒立式螢光顯微鏡與帶螢光分子之 SAv確定PM之biotinylation …………………………………………57 4-2 BR之光電響應 …………………………………………………………61 4-2-1 光電量測系統 …………………………………………………………61 4-2-2 晶片光電訊號背景值的探討 …………………………………………62 4-2-3 以試劑修飾G241C PM 後所製備 晶片之光電響應 ………………………………………………………64 4-2-4 以試劑修飾G241C PM後所製備 晶片之光電響應 ………………………………………………………64 4-2-5 試劑對PM CP端反應之可能機制………………………………………66 4-2-6 以水解酶對PM水解反應 ………………………………………………67 4-2-7 以試劑修飾蛋白酶native PM之光電響應……………………………69 4-3 兩種晶片製備之最適化 ………………………………………………70 4-3-1 以試劑改質native PM EC端之晶片光電 響應操作最適化 ………………………………………………………70 4-3-2 以試劑改質native PM CP端之晶片光電響 應操作最適化 …………………………………………………………73 4-4 兩光電系統電解液酸鹼值與光電訊號關係 …………………………76 4-4-1 電解液酸鹼值對EC端固定之光電晶片訊號探討 ……………………76 4-4-2 電解液酸鹼值對CP端固定之光電晶片訊號探討 ……………………78 4-5 以壓電石英晶體超微量分析 (QCM)探討PM多層膜的塗覆 …………81 4-5-1 雙層PM膜塗覆之動態QCM量測…………………………………………81 4-5-2 PM多層膜塗覆之靜態QCM量測…………………………………………83 PM之EC端向下之多層QCM塗覆量測……………………………………83 PM之CP端向下之多層QCM塗覆量測……………………………………84 4-6 光電系統串並聯訊號探討 ……………………………………………85 4-7 不同電極組合之光電量測系統的開發 ………………………………87 4-7-1 以試劑改質native PM EC端之晶片進行 光電系統測試 …………………………………………………………87 4-7-2 以試劑改質native PM CP端晶片進行光 電系統測試 ……………………………………………………………91 4-7-3 正負電極皆為相同定向之晶片 ………………………………………94 4-8 表面接觸角(contact angle)分析……………………………………96 4-9 掃描式電子顯微鏡 (SEM) ……………………………………………98 4-10 原子力顯微鏡 (AFM) …………………………………………………101 第五章 結論 …………………………………………………………………105 第六章 參考資料 ……………………………………………………………106

洪國峰,”一種製備Bacteriorhodopsin 生物光電晶片的簡易方法”,國立台灣科技大學化學工程研究所碩士論文(2008)

王世育,”細菌視紫質表面修飾及應用於單層膜光電晶片製備之研究”,國立台灣科技大學化學工程研究所碩士論文(2007)

蘇志溫,”Bacteriorhodopsin生物晶片之光電響應”,國立台灣科技大學化學工程研究所碩士論文(2006)

溫文興,”Bacteriorhodopsin突變蛋白之初步研究”,國立台灣科技大學化學工程研究所碩士論文(2005)

林家任,”高分子分散反強誘電性液晶薄膜於光定址式空間光調變元件之應用討論”,國立台灣科技大學高分子工程研究所碩士論文(2004)

Balashov, S. P., “Protonation reactions and their coupling in bacteriorhodopsin,” Biochim. Biophys. Acta., 1460, 75-94 (2000)

Birge, R. R., “Photophysics and molecular electronic applications of the rhodopsins,” Ann. Rev. Phys. Chem., 41, 683–733 (1990)

Birge, R. R., “Protein-based computers,” Sci. Am., 272, 90-95 (1995)

Birge, R. R., Parsons, B., Song, Q. W., and Tallent, J. R., “Protein-based three dimensional memories and associative processors, in Molecular Electronics,” Ratner, M. A. and Jortner, J. eds., Blackweel Science Ltd., Oxford, 439–471 (1997)

Birge, R. R., Gillespie, N. B., Izaguirre, E. W., Kusnetzow, A., Lawrence, A. F., Singh, D., Song, Q. W., Schmidt, E., Stuart, J. A., Seetharaman, S., Wise, K. J., “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B., 103, 10746-10766 (1999)

Bruice, P. Y., “Reactions of alcohols, ethers, epoxides, and sulfur-containing compounds, ” in Organic Chemistry, 4th ed, Nicole, F. Ed, 464-465 (2004), Pearson Education, NY, USA

Fisher, A. D., “Spatial light modulators: functional capabilities, applications, and devices,” Intl. J. Optoelec., 5, 125 (1990)

Garty, H., Klemperer, G., Eisenbach, M., Caplan, S. R., “The direction of light-induced pH changes in purple membrane suspensions, Influence of pH and temperature,” FEBS Lett., 81, 238-242 (1977)

Gibson, N. J., Cassim, J. Y., “Nature of forces stabilizing the transmembrane protein bacteriorhodopsin in purple membrane,” Biophys. J., 56, 769-780 (1989)

Gillespie, N. B., Wise, K. J., Ren, L., Stuart, J. A., Marcy, D. L., Hillebrecht, J., Li, Q., Ramos, L., Jordan, K., Fyvie, S., Birge, R. R., “Characterization of the branched-photocycle intermediates P and Q of bacteriorhodopsin,” J. Phys. Chem. B., 106, 13352-13361 (2002)

Grezesiek, S., Dencher, N. A., “Time-course and stoichiometry of fight-induced proton release and uptake during the photocycle of bacteriorhodopsin,” FEBS Lett., 208, 337-342 (1986)

Henderson, R., Jubb, J. S., Whytock, S., “Specific labelling of the protein and lipid on the extracellular surface of purple membrane,” J. Mol. Biol., 123, 259-274 (1978)

Herbst, J., Heyne, K., Diller, R., “Femtosecond Infrared Spectroscopy of Bacteriorhodopsin Chromophore Isomerization,” Science, 297, 822-825 (2002)

Hermanson, G. T., “Modification of sulfhydryls with iodoacetate,” in Bioconjugate Techniques, 1st ed, Hermanson, G. T. Ed, 98-99 (1996), Academic Press, London, UK

Ho, D., Chu, B., Lee, H., Montemagno, C. D., “Directed protein orientation by site-specific labeling,” IEEE Proc. Nanotechnol., 12-14 (2003)

Imam, H., Lindvold, L. R., Ramanujam, P. S., “Photoanisotropic incoherent to coherent converter using a bacteriorhodopsin thin film,” Opt. Lett. 20, 225–227 (1995)

Kaulen, A. D., “Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle,” Biochim. Biophys. Acta., 1460, 204-219 (2000)

Khorana, H.G., “Bacteriorhodopsin, a membrane protein that uses light to translocate proton,” J. Biol. Chem., 263, 7439-7442 (1988)

Krebs, M. P., Mollaaghababa, R., Khorana, H. G., “Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants,” Proc. Natl. Acad. Sci. USA, 90, 1987-1991 (1993)

Koyama, K., Yamaguchi, N., Miyasaka,T., “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science, 265, 762-765 (1994)

Lanyi, J. K., “X-Ray Crystallography of Bacteriorhodopsin and its photointermediates: insights into the mechanism of proton transport,” Biochem., 66, 1192-1196 (2001)

Liao, N., Gong, M., Xu, D., Qi, G., Zhang, K., “Single-beam two-photon three-dimensional optical storage in a pyrryl-substituted fulgide photochromic material,” Chin. Sci. Bull., 46, 1856–1859 (2001)

Lindvold, L., Lausen, H., “A projection display based on a bacteriorhodopsin thin film,” in Bionanotechnology, 1st ed, Renugopalakrishnan, V. Ed, 79-96 (2006), Springer, Laramine, WY, USA

Liu, S. Y., Ebrey, T. G., “Photocurrent measurements of the purple membrane oriented in a polyacrylamide gel,” Biophys. J., 54, 321-329 (1988)

Liu, S. Y., “Light-induced currents from oriented purple membrane: I. Correlation of the microsecond component (B2) with the L-M photocycle transition,” Biophys. J., 57, 943-950 (1990)

Lukashev, E. P., Robertson, B., “Bacteriorhodopsin retains its light-induced proton-pumping function after being heated to 140°C,” Bioelectrochem. Bioenerg., 37, 157-160 (1995)

Mak-Jurkauskas, M. L., “Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR,” Proc. Natl. Acad. Sci. 105, 883-888 (2007)

Miniewicz, A., Renugopalakrishnan, V., “Synthetic photorefractive and photochromic materials and their comparison with bacteriorhodopsin mutants for optical information processing,” in Bionanotechnology, 1st ed, Renugopalakrishnan, V. Ed, 217-156 (2006), Springer, Laramine, WY, USA

Miyasaka, T., Koyama,K., Itoh, I., “Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor,” Science, 255, 342-344 (1992)

Mohri, S., Matsuo, T., “Highly durable dyed polarizer for use in LCD projection,” Proc. SPIE, 2407, 62–72 (1995)

Mok, F. H., “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Soc. Am., 18, 915–917 (1993)

Murata, K., Hoshino, T., Sato, Y., Hata, M., Tsuda, M., “Unidirectional proton transfer mechanism in the LàMàN sequence of bacteriorhodopsin,” J. Mol. Struct., 664-665, 125-133 (2003)

Oesterhelt, D., Stoeckenius, W., “Rhodopsin-like protein from the purple membrane of Halobacterium halobium,” Nat. New Biol., 233, 149-154 (1971)

Oesterhelt, D., Meentzen, M., Schuhmann, L., “Reversible dissociation of the purple complex in bacteriorhodopsin and indentification of 13-cis and all-trans-retinal and its chromophores,” Eur. J. Biochem, 40, 453–463 (1973)

Ovchinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Kiselev, A. V., Lobanov, N. A., “The structural basis of the functioning of bacteriorhodopsin: an overview,” FEBS Lett., 100, 219-224 (1979)

Popp, A., Wolperdinger, M., Hampp, N., Brauchle, C., Oesterhelt, D., “Photochemical conversion of the o-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films,” Biophys. J., 65, 1449-1459 (1993)

Ren, Q., Zhao Y. P., Han, L., Zhao, H. B., “A nanomechanical device based on light-driven proton pumps,” Nanotechnology, 17, 1778-1785 (2006)

Rentzepis, P. M., “Three-Dimensional Optical Memory,” The Regents of the University of California, US. (1993)

Ritzel, C., Meerholz, K., Braeuchle, C., Oesterhelt, D. “Optically addressed spatial light modulator on the basis of Bacteriorhodopsin,” Proc. SPIEInt. Soc. Opt. Eng (Liquid Crystals II), 3475, 49-55 (1998)

Sharma, M. K., Jattani, H., Gilchrist, M. L., “Bacteriorhodopsin conjugates as anchors for supported membranes,” Bioconjug. Chem., 15, 942-947 (2004)

Shen, Y., Safinya, C. R., Liang, K. S., Ruppert, A. F., Rothschild, K. J., “Stabilization of the membrane protein bacteriorhodopsin to 140℃ in two-dimentional films,” Nature, 366, 48-50 (1993)

Spara, K. T., Besir, H., Oesterhelt, D., Muller, D. J., “Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy,” J. Mol. Biol., 355, 640-650 (2006)

Stuart, J. A., Marcy, D. L., Wise, K. J, Birge, R. R., “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met., 127, 3–15 (2002)

Stuart, J. A., Tallent, J. R., Tan, E. H. L., Birge, R. R., “Protein-based volumetric memory,” Proc. IEEE Nonvol. Mem. Tech. (INVMTC), 6, 45–51 (1996)

Wang, J. P., Song, L., Yoo, S. K., El-sayed, M. A., “A comparison of the photoelectric current responses resulting from the proton pumping process of bacteriorhodopsin under pulsed and CW laser excitation,” J. Phys. Chem. B, 101, 10599-10604 (1997a)

Wang, J. P., Yoo, S. K., Song, L., El-sayed, M. A., “Molecular mechanism of the differential photoelectric response of bacteriorhodopsin,” J. Phys. Chem. B, 101, 3420-3423 (1997b)

Wilmouth, R. C., Clifton, I. J., Neutze, R., “Recent successes in time-resolved protein crystallography,” Nat. Prod. Rep., 17, 527-533 (2000)

Xi, B., Wise, K. J., Stuart, J. A., Birge, R. R., “Bacteriorhodopsin-based 3D optical memory,” in Bionanotechnology, 1st ed, Renugopalakrishnan, V. Ed, 39-60 (2006), Springer, Laramine, WY, USA

無法下載圖示 全文公開日期 2014/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE