簡易檢索 / 詳目顯示

研究生: 林文揚
Wen-Yang Lin
論文名稱: 利用微流道系統製備銅氧化物及四氧化三鐵奈米複合材料並應用於有機染料的降解
Continuous Preparation of Copper Oxide and Ferroferric Oxide (CuO-Fe3O4) via Microreactor applied on the Degradation of Organic dye
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 施志欣
Chih-Hsin Shih
莊怡哲
Yi-Jhe Jhuang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 136
中文關鍵詞: 微流道四氧化三鐵氧化銅有機染料芬頓法亞甲基藍
外文關鍵詞: microfluid, Fe3O4, CuO, organic dyes, Fenton process, methylene blue
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

銅氧化物 (CuxOy) 具有良好的催化活性,可因應需求製備不同形狀之氧化銅。製備CuxOy的常見方式為利用批次製程,但可能造成反應不均一,且較難控制反應物加入的體積。微流道系統具有連續製備、可彈性設計及良好的熱傳及質傳的性質,故具有潛力應用於製備奈米粒子。因此本研究主要分為三個部分,第一部分為利用微流道系統製備CuxOy粒子,藉由改變還原劑、界面活性劑濃度及流率控制粒子的形狀及大小,第二部分為利用氧化鐵 (Fe3O4) 可被磁鐵收集之性質,以氫氧化鈉或氨水作為水解劑於微流道系統,製備具有磁性的Fe3O4及CuO-Fe3O4奈米粒子,先最適化製備Fe3O4所需之反應時間及參數,再將最適化位置改變為硝酸銅進料位置以製備CuO-Fe3O4。在第一及第二部份,本研究分別以場發射電子顯微鏡 (FE-SEM)、 X光繞射儀 (XRD)、 超導量子干涉儀 (SQUID) 、及界達電位分析儀 (ZetaPALS)等儀器,並分別對CuxOy、Fe3O4以及CuO-Fe3O4進行粒子形狀、結晶型態以及相關物性分析,以確認CuO成功製備於Fe3O4粒子表面。第三部分則將製備的CuO-Fe3O4,利用芬頓法進行有機染料的降解,降解目標物分別為10 ppm之亞甲基藍 (methylene blue, MB)、 甲基橙 (methyl orange, MO)以及4-硝基苯酚 (4-nitrophenol, 4-NP),計算其降解率,並利用擬一級反應方程式 (pseudo-first-order reaction equation )計算的反應常數k,探討CuO-Fe3O4降解有機染料的反應速率。本研究先以亞甲基藍作為降解目標,以0.25 M氫氧化鈉製備的CuO-Fe3O4對其降解速率最高,經降解24小時後,降解率可達99.6 %,反應常數k為0.185 h-1,完成降解後,再以磁鐵收集CuO-Fe3O4並秤重,以及利用碘化鉀量測經降解24小時,過氧化氫之濃度。此外,再以最適化之CuO-Fe3O4分別降解甲基橙及4-硝基苯酚,經降解24小時後,對甲基橙降解率可達97.6 %,且反應常數k為0.288 h-1;對4-硝基苯酚降解率可達82.8 %,且反應常數k為0.151 h-1。


Copper oxide (CuxOy) possesses good catalytic properties and can be facilely prepared into different shapes, depending on the intended applications. So far, CuxOy is conventionally prepared by a batch process, which may cause nonhomogeneous reaction and pose difficulties to control the reaction volume. Microfluidic system has several characteristic advantages, such as continuous preparation, flexible design, good heat transfer and mass transfer, which offers great potential for preparation of various metal and metal oxide nanoparticles. Therefore, this study were aimed to synthesize CuxOy nanostructures and its composites by a microfluidic system, which composed of the following three parts. In the first part of this thesis, CuxO¬y was prepared by adjusting the reducing agent concentrations, surfactant concentrations, and the reactant flow rates to control shapes and sizes of the resulting CuxOy. In the second part, CuxO¬y ¬was incorporated with Fe3O4 nanoparticles to provide a magnetic property to the catalyst. NaOH and NH4OH were used to prepare Fe3O4 and CuO-Fe3O4 via a microreactor system. The reaction time and other parameters were firstly optimized, followed by the optimization of the feeding entry of CuSO4. The physical and chemical properties of the resulting CuxOy, Fe3O4, and composite CuO-Fe3O4 nanoparticles were characterized by FESEM, XRD, SQUID, and ZetaPALS.
In the third part of this thesis, CuO-Fe3O4 was applied for the degradation of organic dye, including methylene blue (MB), methyl orange (MO), and 4-nitrophenol (4-NP). The reaction rate k was calculated following a pseudo-first-order reaction kinetics to compare the degradation rate constant. CuO-Fe3O4, which was prepared from 0.25 M NaOH, can achieve the highest degradation percentage (99.6%) for MB dye after 24 hours and the degradation rate constant k was found to be 0.185 h-1. After degradation, the CuO-Fe3O4 can be easily collected by a magnet and the weight of CuO-Fe3O4 was measured. Potassium iodide (KI) was used to detect the H2O2 concentration after degradation reaction. In addition, CuO-Fe3O4 was employed for the degradation of MO dye and 4-NP. For the degradation of MO, the degradation efficiency can achieve 97.6% after 24 hour and the degradation rate constant k was 0.288 h-1. For the degradation of 4-NP, the degradation can achieve 82.8 % after 24 hour and the rate of degradation k was 0.151 h-1.

摘要 I Abstract III 致謝 V 目錄 VII 圖索引 IX 表索引 XIVV 第一章 緒論 1 1-1 前言 1 1-2 奈米材料的發展與應用 2 1-3 微流道的介紹與發展 3 1-4 研究動機 4 第二章 文獻回顧 5 2-1 奈米材料 5 2-1-2 奈米材料之特性 7 2-1-3 奈米材料之製備方法 8 2-2 CuxOy製備方法及其應用 10 2-2-1 CuO、Cu2O及Cu(OH)2之性質及其應用 10 2-2-2 批次製程製備CuxOy 11 2-2-3 微流道系統製備CuxOy 14 2-3磁性材料 18 2-3-1磁性材料之簡介 18 2-3-2 磁學簡介 19 2-3-3 Fe3O4奈米粒子之性質及應用 21 2-3-4批次製程製備Fe3O4 23 2-3-5微流道系統製備Fe3O4 27 2-4 合金型及Fe3O4奈米複合材料製備方法及其應用 30 2-4-1批次製程製備CuO及Fe3O4奈米複合材料 30 2-4-2 利用微流道系統製備合金型磁性奈米複合材料 33 2-5 降解汙水中之有機染料 36 2-5-1降解汙水中有機染料方法及機制 36 2-5-2以奈米複合材料應用於有機染料之降解 39 第三章 實驗方法 42 3-1 實驗藥品與溶液配製 42 3-1-1 實驗藥品 42 3-1-2 溶液配製 43 3-2 實驗設備 45 3-3 實驗方法 46 3-3-1 利用銑削機製備微反應器 46 3-3-2 以微流道系統A製備CuxOy粒子 46 3-3-3 製備Fe3O4及CuO-Fe3O4奈米粒子 47 3-3-4 Fe3O4及CuO-Fe3O4應用於降解有機染料 50 3-4 分析儀器原理及方法 53 3-4-1 場發射掃描式電子顯微鏡 (FE-SEM) 53 3-4-2 X光繞射分析 (XRD) 53 3-4-3 電射介面電位分析儀暨粒徑分析儀 (ZetaPALS) 54 3-4-4 超導量子磁性干涉儀 (SQUID) 54 3-4-5 拉曼光譜儀 (Raman) 55 3-4-6 Fe3O4及CuO-Fe3O4於降解有機染料之效率 56 第四章 結果與討論 57 4-1 以微流道系統A製備CuxOy奈米粒子 57 4-1-1 CuxOy粒子大小及形狀 (SEM) 57 4-1-2 還原劑及界面活性劑濃度對於製備CuxOy晶格結構之影響 61 4-1-3 還原劑及界面活性劑濃度對於CuxOy之振動官能基光譜分析 (Raman) 63 4-1-4 不同流率對於製備CuxOy粒子形狀機制之探討 63 4-2 以微流道系統製備具有磁性之CuO粒子 (CuO-Fe3O4) 66 4-2-1 以微流道系統B製備磁性粒子 (Fe3O4) 66 4-2-2 利用微流道系統C製備具有磁性之CuO (CuO-Fe3O4) 78 4-3 利用具有磁性之CuO (CuO-Fe3O4)降解有機染料 85 4-3-1 CuO-Fe3O4降解亞甲基藍之最適化參數 85 4-3-2 CuO-Fe3O4應用於降解其他有機物 94 4-3-3 CuO-Fe3O4對於降解有機染料之效率與文獻值比較 97 第五章 結果與討論 98 5-1 結論 98 5-2 未來展望 100 第六章 文獻回顧 101 第七章 附錄 109 教授們的Q&A 114

[1] M. Vrijheid, M. Casas, M. Gascon, D. Valvi, and M. Nieuwenhuijsen, "Environmental pollutants and child health-A review of recent concerns," Int J Hyg Environ Health, vol. 219, pp. 331-42, July 2016.
[2] F. M. Drumond Chequer, G. A. R. de Oliveira, E. R. Anastacio Ferraz, J. Carvalho, M. V. Boldrin Zanoni, and D. P. de Oliveir, "Textile Dyes: Dyeing Process and Environmental Impact," 2013.
[3] L. P. a. M. Alves, "Environmental Protection Strategies for Sustainable 111 Development, Strategies for Sustainability," Springer Science+Business Media 2012.
[4] T. K. S. Sara Dawood, "Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Adsorbents" J Chem Proc Eng, vol. 1:104, 2014.
[5] A. P. Dowling, "Development of nanotechnologies," Materials Today, vol. 7, pp. 30-35, 2004.
[6] E. I. Cedillo-González, R. Riccò, M. Montorsi, M. Montorsi, P. Falcaro, and C. Siligardi, "Self-cleaning glass prepared from a commercial TiO2 nano-dispersion and its photocatalytic performance under common anthropogenic and atmospheric factors," Building and Environment, vol. 71, pp. 7-14, 2014.
[7] T. G. Smijs and S. Pavel, "Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness," Nanotechnol Sci Appl, vol. 4, pp. 95-112, Oct 13 2011.
[8] J. Tian and G. Cao, "Semiconductor quantum dot-sensitized solar cells," Nano Rev, vol. 4, Oct 31 2013.
[9] S. H. Lee, J. B. Lee, M. S. Bae, D. A. Balikov, A. Hwang, T. C. Boire, et al., "Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases," Adv Healthc Mater, vol. 4, pp. 2037-45, Sep 16 2015.
[10] X. Luo, A. Morrin, A. J. Killard, and M. R. Smyth, "Application of Nanoparticles in Electrochemical Sensors and Biosensors," Electroanalysis, vol. 18, pp. 319-326, 2006.
[11] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-73, Jul 27 2006.
[12] X. Yao, Y. Zhang, L. Du, J. Liu, and J. Yao, "Review of the applications of microreactors," Renewable and Sustainable Energy Reviews, vol. 47, pp. 519-539, 2015.
[13] C. Zhang, J. Xu, W. Ma, and W. Zheng, "PCR microfluidic devices for DNA amplification," Biotechnol Adv, vol. 24, pp. 243-84, May-Jun 2006.
[14] S. N. Bhatia and D. E. Ingber, "Microfluidic organs-on-chips," Nat Biotechnol, vol. 32, pp. 760-72, Aug 2014.
[15] F. Fanelli, G. Parisi, L. Degennaro, and R. Luisi, "Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis," Beilstein J Org Chem, vol. 13, pp. 520-542, 2017.
[16] U. Manzoor, M. Islam, L. Tabassam, and S. U. Rahman, "Quantum confinement effect in ZnO nanoparticles synthesized by co-precipitate method," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 1669-1672, 2009.
[17] P. Christian, F. Von der Kammer, M. Baalousha, and T. Hofmann, "Nanoparticles: structure, properties, preparation and behaviour in environmental media," Ecotoxicology, vol. 17, pp. 326-43, Jul 2008.
[18] M. A. Gatoo, S. Naseem, M. Y. Arfat, A. M. Dar, K. Qasim, and S. Zubair, "Physicochemical properties of nanomaterials: implication in associated toxic manifestations," Biomed Res Int, vol. 2014, p. 498420, 2014.
[19] I. Khan, K. Saeed, and I. Khan, "Nanoparticles: Properties, applications and toxicities," Arabian Journal of Chemistry, 2017.
[20] S. Priyadarsini, S. Mukherjee, and M. Mishra, "Nanoparticles used in dentistry: A review," J Oral Biol Craniofac Res, vol. 8, pp. 58-67, Jan-Apr 2018.
[21] J. N. Tiwari, R. N. Tiwari, and K. S. Kim, "Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices," Progress in Materials Science, vol. 57, pp. 724-803, 2012.
[22] M. Ahmadi, H. Mistry, and B. Roldan Cuenya, "Tailoring the Catalytic Properties of Metal Nanoparticles via Support Interactions," J Phys Chem Lett, vol. 7, pp. 3519-33, Sep 1 2016.
[23] D. Guo, G. Xie, and J. Luo, "Mechanical properties of nanoparticles: basics and applications," Journal of Physics D: Applied Physics, vol. 47, p. 013001, 2014.
[24] X. Huang and M. A. El-Sayed, "Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy," Journal of Advanced Research, vol. 1, pp. 13-28, 2010.
[25] M. Escobar Castillo, V. V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, et al., "Effect of particle size on ferroelectric and magnetic properties of BiFeO(3) nanopowders," Nanotechnology, vol. 24, p. 355701, Sep 6 2013.
[26] E. D. Smolensky, H. Y. Park, Y. Zhou, G. A. Rolla, M. Marjanska, M. Botta, et al., "Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents," J Mater Chem B, vol. 1, pp. 2818-2828, Jun 14 2013.
[27] M. Mazilu, V. Musat, P. Innocenzi, T. Kidchob, and D. Marongiu, "Liquid-Phase Preparation and Characterization of Zinc Oxide Nanoparticles," Particulate Science and Technology, vol. 30, pp. 32-42, 2012.
[28] H. R. Ghorbani, "Biological and Non-Biological Methods for Fabrication of Copper Nanoparticles," Chemical Engineering Communications, vol. 202, pp. 1463-1467, 2014.
[29] S. Bhatia, "Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications," pp. 33-93, 2016.
[30] V. Andal and G. Buvaneswari, "Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid," Engineering Science and Technology, an International Journal, vol. 20, pp. 340-344, 2017.
[31] Q.-m. Liu, D.-b. Zhou, Y.-y. Yamamoto, K. Kuruda, and M. Okido, "Effects of reaction parameters on preparation of Cu nanoparticles via aqueous solution reduction method with NaBH4," Transactions of Nonferrous Metals Society of China, vol. 22, pp. 2991-2996, 2012.
[32] K. Onar and M. E. Yakinci, "Synthesis of Fe3O4 nanoparticles for biomedical applications," Journal of Physics: Conference Series, vol. 667, p. 012005, 2016.
[33] G. Filipic and U. Cvelbar, "Copper oxide nanowires: a review of growth," Nanotechnology, vol. 23, p. 194001, May 17 2012.
[34] M. E. Grigore, E. R. Biscu, A. M. Holban, M. C. Gestal, and A. M. Grumezescu, "Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles," Pharmaceuticals (Basel), vol. 9, Nov 30 2016.
[35] G. Li, M. Jing, Z. Chen, B. He, M. Zhou, and Z. Hou, "Self-assembly of porous CuO nanospheres decorated on reduced graphene oxide with enhanced lithium storage performance," RSC Advances, vol. 7, pp. 10376-10384, 2017.
[36] F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, et al., "A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method," RSC Advances, vol. 6, pp. 79343-79349, 2016.
[37] E. Assadian, M. H. Zarei, A. G. Gilani, M. Farshin, H. Degampanah, and J. Pourahmad, "Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes," Biol Trace Elem Res, Oct 24 2017.
[38] P. C. Hanna L. Karlsson, Johanna Gustafsson, and Lennart Mo¨ller, "Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes," Chem. Res. Toxicol., vol. 21, pp. 1726-1732, 2008.
[39] Y. L. Liu, Y. C. Liu, R. Mu, H. Yang, C. L. Shao, J. Y. Zhang, et al., "The structural and optical properties of Cu2O films electrodeposited on different substrates," Semiconductor Science and Technology, vol. 20, pp. 44-49, 2005.
[40] Q. Shi, N. Liu, and Y. Liang, "Preparation of MgO-Supported Cu2O Catalyst and Its Catalytic Properties for Cyclohexanol Dehydrogenation," Chinese Journal of Catalysis, vol. 28, pp. 57-61, 2007.
[41] X. Deng, C. Wang, M. Shao, X. Xu, and J. Huang, "Low-temperature solution synthesis of CuO/Cu2O nanostructures for enhanced photocatalytic activity with added H2O2: synergistic effect and mechanism insight," RSC Advances, vol. 7, pp. 4329-4338, 2017.
[42] A. Singh, A. Ahmed, K. N. Prasad, S. Khanduja, S. K. Singh, J. K. Srivastava, et al., "Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin," Antimicrob Agents Chemother, vol. 59, pp. 6882-90, Nov 2015.
[43] H. Siddiqui, M. S. Qureshi, and F. Z. Haque, "Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis," Optik - International Journal for Light and Electron Optics, vol. 127, pp. 2740-2747, 2016.
[44] A. Bhattacharjee and M. Ahmaruzzaman, "CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase," RSC Adv., vol. 6, pp. 41348-41363, 2016.
[45] F. Janene, H. Dhaouadi, L. Arfaoui, N. Etteyeb, and F. Touati, "Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties," Ionics, vol. 22, pp. 1395-1403, 2016.
[46] D. P. Volanti, D. Keyson, L. S. Cavalcante, A. Z. Simões, M. R. Joya, E. Longo, et al., "Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave," Journal of Alloys and Compounds, vol. 459, pp. 537-542, 2008.
[47] A. Shui, W. Zhu, L. Xu, D. Qin, and Y. Wang, "Green sonochemical synthesis of cupric and cuprous oxides nanoparticles and their optical properties," Ceramics International, vol. 39, pp. 8715-8722, 2013.
[48] L. Zhang, Z. Liu, Y. Wang, R. Xie, X.-J. Ju, W. Wang, et al., "Facile immobilization of Ag nanoparticles on microchannel walls in microreactors for catalytic applications," Chemical Engineering Journal, vol. 309, pp. 691-699, 2017.
[49] Z. Peng, X. Liu, and G. Lin, "The synergistic degreasing treatment of background irradiated photocatalysis and microreactor," Catalysis Communications, vol. 90, pp. 79-82, 2017.
[50] W. Zhou, Y. Ke, Q. Wang, S. Wan, J. Lin, J. Zhang, et al., "Development of cylindrical laminated methanol steam reforming microreactor with cascading metal foams as catalyst support," Fuel, vol. 191, pp. 46-53, 2017.
[51] S. Biswas, J. T. Miller, Y. Li, K. Nandakumar, and C. S. Kumar, "Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: ultrasmall copper nanoclusters as a case study," Small, vol. 8, pp. 687-98, Mar 12 2012.
[52] L. Xu, C. Srinivasakannan, J. Peng, L. Zhang, and D. Zhang, "Synthesis of Cu-CuO nanocomposite in microreactor and its application to photocatalytic degradation," Journal of Alloys and Compounds, vol. 695, pp. 263-269, 2017.
[53] Y. Song, R. Li, Q. Sun, and P. Jin, "Controlled growth of Cu nanoparticles by a tubular microfluidic reactor," Chemical Engineering Journal, vol. 168, pp. 477-484, 2011.
[54] J. Yamauchi, "Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science in Fundamentals of Magnetism."
[55] V. A. J. Silva, P. L. Andrade, M. P. C. Silva, A. Bustamante D, L. De Los Santos Valladares, and J. Albino Aguiar, "Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides," Journal of Magnetism and Magnetic Materials, vol. 343, pp. 138-143, 2013.
[56] M. P. Marszall, "Application of magnetic nanoparticles in pharmaceutical sciences," Pharm Res, vol. 28, pp. 480-3, Mar 2011.
[57] J. M. D. Coey, "Permanent magnet applications," Journal of Magnetism and Magnetic Materials 248 (2002) 441–456, vol. 248, pp. 441-456, 2002.
[58] R. Cha, J. Li, Y. Liu, Y. Zhang, Q. Xie, and M. Zhang, "Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery," Colloids Surf B Biointerfaces, vol. 158, pp. 213-221, Oct 1 2017.
[59] M. Bennet, L. Bertinetti, R. K. Neely, A. Schertel, A. Kornig, C. Flors, et al., "Biologically controlled synthesis and assembly of magnetite nanoparticles," Faraday Discuss, vol. 181, pp. 71-83, 2015.
[60] S. M. Georges El Bacha, and and J. Viola, "Hysteresis Mitigation in Current Sensor ICs using Ferromagnetic Cores," Allegro MicroSystems, LLC, 2014.
[61] M. I. Majeed, Q. Lu, W. Yan, Z. Li, I. Hussain, M. N. Tahir, et al., "Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates," Journal of Materials Chemistry B, vol. 1, p. 2874, 2013.
[62] A. G. Nene, M. Takahashi, and P. R. Somani, "Feand Fe Nanoparticles by Chemical Reduction of Fe(acac) by Ascorbic Acid: Role of Water," World Journal of Nano Science and Engineering, vol. 06, pp. 20-28, 2016.
[63] Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama, "Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles," Sci Rep, vol. 7, p. 9894, Aug 30 2017.
[64] M. R. Ghazanfari, M. Kashefi, S. F. Shams, and M. R. Jaafari, "Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications," Biochem Res Int, vol. 2016, p. 7840161, 2016.
[65] X. Zhang, J. Qian, and B. Pan, "Fabrication of Novel Magnetic Nanoparticles of Multifunctionality for Water Decontamination," Environ Sci Technol, vol. 50, pp. 881-9, Jan 19 2016.
[66] S. Z. CHIA CHIN HUA, R. FARAHIYAN, LIEW TZE KHONG, KIEN L. and M. A. a. S. A. NGUYEN, "Size-controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method," Sains Malaysiana, vol. 37, pp. 389-394, 2008.
[67] G. P. Santos, A. F. Melo, and F. N. Crespilho, "Magnetically controlled single-nanoparticle detection via particle-electrode collisions," Phys Chem Chem Phys, vol. 16, pp. 8012-8, May 7 2014.
[68] M. T. a. M. E. Khosroshahi, "Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH," International Journal of Chemical Engineering and Applications, vol. 3, pp. 206-210, 2012.
[69] M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Rahman, et al., "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications," Molecules, vol. 18, pp. 7533-48, Jun 27 2013.
[70] W. B. Lee, C. H. Weng, F. Y. Cheng, C. S. Yeh, H. Y. Lei, and G. B. Lee, "Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system," Biomed Microdevices, vol. 11, pp. 161-71, Feb 2009.
[71] W. Glasgow, B. Fellows, B. Qi, T. Darroudi, C. Kitchens, L. Ye, et al., "Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition," Particuology, vol. 26, pp. 47-53, 2016.
[72] A. Abou Hassan, O. Sandre, V. Cabuil, and P. Tabeling, "Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel," Chem Commun (Camb), pp. 1783-5, Apr 21 2008.
[73] K. Kumar, A. M. Nightingale, S. H. Krishnadasan, N. Kamaly, M. Wylenzinska-Arridge, K. Zeissler, et al., "Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor," Journal of Materials Chemistry, vol. 22, p. 4704, 2012.
[74] L. Uson, M. Arruebo, V. Sebastian, and J. Santamaria, "Single phase microreactor for the continuous, high-temperature synthesis of <4 nm superparamagnetic iron oxide nanoparticles," Chemical Engineering Journal, vol. 340, pp. 66-72, 2018.
[75] Y. Zhang, W. Yan, Z. Sun, X. Li, and J. Gao, "Fabrication of magnetically recyclable Ag/Cu@Fe3O4 nanoparticles with excellent catalytic activity for p-nitrophenol reduction," RSC Advances, vol. 4, p. 38040, 2014.
[76] Z. Shokri, B. Zeynizadeh, and S. A. Hosseini, "One-pot reductive-acetylation of nitroarenes with NaBH4 catalyzed by separable core-shell Fe3O4@Cu(OH)x nanoparticles," J Colloid Interface Sci, vol. 485, pp. 99-105, Jan 1 2017.
[77] J. Ding, L. Liu, J. Xue, Z. Zhou, G. He, and H. Chen, "Low-temperature preparation of magnetically separable Fe3O4 @CuO-RGO core-shell heterojunctions for high-performance removal of organic dye under visible light," Journal of Alloys and Compounds, vol. 688, pp. 649-656, 2016.
[78] Y. Liu, S. Ren, W. Chi, Q. Huang, and C. Yu, "Continuous-Flow Preparation of a Magnetite@Carbon Composite for High-Performance Lithium-Ion Battery Electrodes," Energy Technology, vol. 4, pp. 793-797, 2016.
[79] A. Abou-Hassan, R. Bazzi, and V. Cabuil, "Multistep Continuous-Flow Microsynthesis of Magnetic and Fluorescent γ-Fe2O3@SiO2 Core/Shell Nanoparticles," Angewandte Chemie, vol. 121, pp. 7316-7319, 2009.
[80] S. Tao, M. Yang, H. Chen, M. Ren, and G. Chen, "Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity," J Colloid Interface Sci, vol. 486, pp. 16-26, Jan 15 2017.
[81] E. Forgacs, T. Cserhati, and G. Oros, "Removal of synthetic dyes from wastewaters: a review," Environ Int, vol. 30, pp. 953-71, Sep 2004.
[82] A. Kaur and S. Sharma, "Various methods for removal of dyes from industrial effluents - a review," Indian Journal of Science and Technology, vol. 11, pp. 1-21, 2018.
[83] N. L. Subbulekshmi and E. Subramanian, "Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p -nitrophenol and p -nitroaniline," Journal of Environmental Chemical Engineering, vol. 5, pp. 1360-1371, 2017.
[84] C. M. Lousada, M. Yang, K. Nilsson, and M. Jonsson, "Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides," Journal of Molecular Catalysis A: Chemical, vol. 379, pp. 178-184, 2013.
[85] D. Melgoza, A. Hernandez-Ramirez, and J. M. Peralta-Hernandez, "Comparative efficiencies of the decolourisation of Methylene Blue using Fenton's and photo-Fenton's reactions," Photochem Photobiol Sci, vol. 8, pp. 596-9, May 2009.
[86] P. Deka, R. C. Deka, and P. Bharali, "Porous CuO nanostructure as a reusable catalyst for oxidative degradation of organic water pollutants," New Journal of Chemistry, vol. 40, pp. 348-357, 2016.
[87] S. Zaman, A. Zainelabdin, G. Amin, O. Nur, and M. Willander, "Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes," Journal of Physics and Chemistry of Solids, vol. 73, pp. 1320-1325, 2012.
[88] X. Zhang, M. Lin, X. Lin, C. Zhang, H. Wei, H. Zhang, et al., "Polypyrrole-enveloped Pd and Fe3O4 nanoparticle binary hollow and bowl-like superstructures as recyclable catalysts for industrial wastewater treatment," ACS Appl Mater Interfaces, vol. 6, pp. 450-8, Jan 8 2014.
[89] J. Huang, "An Introduction to SEM Operational Principles and Geologic Applications for Shale Hydrocarbon Reservoirs," An Introduction to SEM Operational Principles and Geologic Applications, pp. 1-6, 2013.
[90] H. E. Ghandoor, "Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles," Int. J. Electrochem. Sci, vol. 7, 2012.
[91] S. Bhattacharjee, "DLS and zeta potential - What they are and what they are not?," J Control Release, vol. 235, pp. 337-351, Aug 10 2016.
[92] L. Debbichi, M. C. Marco de Lucas, J. F. Pierson, and P. Krüger, "Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy," The Journal of Physical Chemistry C, vol. 116, pp. 10232-10237, 2012.
[93] Y. Liu, Z. Chen, C. H. Shek, C. M. Wu, and J. K. Lai, "Hierarchical mesoporous MnO2 superstructures synthesized by soft-interface method and their catalytic performances," ACS Appl Mater Interfaces, vol. 6, pp. 9776-84, Jun 25 2014.
[94] P. Zhang, Y. Zhan, B. Cai, C. Hao, J. Wang, C. Liu, et al., "Shape-controlled synthesis of Mn3O4 nanocrystals and their catalysis of the degradation of methylene blue," Nano Research, vol. 3, pp. 235-243, 2010.
[95] M. E. M. Ali, T. A. Gad-Allah, and M. I. Badawy, "Heterogeneous Fenton process using steel industry wastes for methyl orange degradation," Applied Water Science, vol. 3, pp. 263-270, 2013.
[96] S.-P. Sun and A. T. Lemley, "p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways," Journal of Molecular Catalysis A: Chemical, vol. 349, pp. 71-79, 2011.
[97] X. Xiong, Y. Sun, B. Sun, W. Song, J. Sun, N. Gao, et al., "Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol," RSC Advances, vol. 5, pp. 13357-13365, 2015.
[98] D. Wan, W. Li, G. Wang, L. Lu, and X. Wei, "Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst," Sci Total Environ, vol. 574, pp. 1326-1334, Jan 01 2017.

無法下載圖示 全文公開日期 2023/08/16 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE