簡易檢索 / 詳目顯示

研究生: 陳昱廷
Yu-Ting Chen
論文名稱: 矩形通道流電解器應用於改善甘油氧化反應之電化學表現及抑制氧氣產物之生成
Rectangular channel flow electrolyzer for enhancing electrochemical performance of glycerol electrooxidation reaction and inhibition of oxygen production
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 陳昱劭
Yu-Shao Chen
潘詠庭
Yung-Tin Pan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 141
中文關鍵詞: 鹼性水電解電催化甘油氧化反應矩形通道流反應器
外文關鍵詞: alkaline water electrolysis, glycerol electrooxidation reaction, rectangular channel flow electrolyzer
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氫氣由於其零污染、零碳排、能量密度高等優點,氫能成為最為關注的新興能源之一。鹼性水電解是常見的氫氣製備方法,目前已有工業化實績,但在高電流密度下,由於氣泡生成後占據電極表面,以及溶液中的懸浮氣泡造成的溶液電阻上升,導致電解系統產生額外的能量損耗。而水電解反應後的氣相氫氣與氧氣混合,進入了氫氣的可燃範圍,對電解製程產生重大的安全疑慮,因此需在電解器中放置隔膜分離兩極之氣相產物,但隔膜的電阻亦會造成系統的額外能耗。
      為了解決上述所提到的問題,本實驗在電解液中加入甘油,以甘油氧化反應取代產氧反應,使陽極產物由氣相改為液相,解決氣相產物混合之問題,並設計無隔膜矩形通道流反應器及氣液分離槽,通過壓力測試確認系統之氣密性,使得電化學反應在密閉系統中進行,利於氣相產物取樣分析。實驗時通過電解液循環流動,使反應生成氣泡易於結合及脫離,並隨電解液流動被帶至下游氣液分離槽中,施加強制對流後,亦可增加甘油質傳速率,提升系統電化學表現。
      由於電解液流動狀態對質傳探討十分重要,我們使用染劑進行流體可視化,確認雷諾數與流體狀態之關係,結果顯示雷諾數在1250以內時,流態為層流,介於1250至2500時,進入過渡流態,當雷諾數大於2500後,流態呈現湍流。我們在不同流速下進行鹼性水電解實驗,並針對氣相產物進行取樣分析,實驗結果顯示隨著流速增加,改善氣泡對溶液電阻的影響,使電流表現微幅上升;而氣相產物分析後,氫氣與氧氣取樣結果與理論產量相符,依此驗證此系統之氣密性與取樣方法之合理性。
      接著我們配置三種不同濃度的甘油鹼性水溶液進行反應,結果顯示當甘油濃度為0.05 m時,由於反應物甘油的消耗,導致電極表面甘油濃度不足,使甘油氧化與水氧化反應形成競爭反應,無法完全抑制氧氣的生成。此時依據氣相產物分析的結果,當施加2.4 V、2.8 V、3.2 V三個不同電壓時,水氧化反應在陽極電荷轉移中占比分別為51%、62%及71%,隨著電解液流率的上升,甘油質傳速率隨著強制對流而上升,使競爭反應得到改變,在陽極的電荷轉移中,甘油氧化反應的比例逐漸上升,造成氧氣產量下降,當系統雷諾數達到3000時,同樣在上述三個施加電位的反應中,水氧化反應在陽極電荷轉移中的占比分別降至27%、45%及53%,由此可見在施加強制對流流場後,對於增加甘油質傳速率及對競爭反應的影響。而在甘油濃度為2.1 m 以及12 m時,由於電極表面甘油濃度充足,產氧反應完全抑制,使得由於氣相產物混合而衍生的製程安全疑慮完全得到解決。


    Hydrogen, due to its advantages of zero pollution, zero carbon emissions, and high energy density, has become one of the most popular emerging energy. Alkaline water electrolysis is a common method for hydrogen production, with industrial applications already in place. However, at high current densities, the generation of bubbles occupies the electrode surface, and the presence of suspended bubbles in the solution increases the electrical resistance of electrolyte, resulting in additional energy losses in the electrolysis system. Furthermore, the mixing of gaseous hydrogen and oxygen, the gas-phase products of water electrolysis, enter the flammable range of hydrogen, raising a significant safety risk to the electrolysis process. Therefore, it is necessary to incorporate a membrane in the electrolyzer to separate the gaseous products at the two electrodes. However, the membrane's resistance also contributes to additional energy consumption in the system.
    To solve the aforementioned issues, the experiment added glycerol into the electrolyte to replace the oxygen evolution reaction(OER) with glycerol electrooxidation reaction(GEOR). This transformation converts the anodic products from gaseous to liquid phase, resolving the issue of mixing gaseous products. A membrane-free rectangular channel flow reactor and a gas-liquid separation tank were designed. Before start up, the system was confirmed through pneumatic pressure test, allowing the electrochemical reaction to occur within a closed system, with the sampling and analysis of the gaseous products. During the experiment, the electrolyte was circulated by metering pump to promote the coalescence and detachment of the generated bubbles, which were then carried downstream to the gas-liquid separator by the flow of the electrolyte. The application of forced convection also increased the glycerol mass transfer rate, thereby enhancing the electrochemical performance of the system.
    Since the flow patterns of the electrolyte is crucial for transport phenomena, we employed dye visualization to observe the relationship between Reynolds number and fluid patterns. The results showed that at Reynolds numbers below 1250, the flow was laminar, transitioning flow regime between 1250 and 2500. Above a Reynolds number of 2500, the flow exhibited turbulence. We conducted alkaline water electrolysis experiments at different flow rates with the sampling and analysis of the gaseous byproducts. The experimental results showed that as the flow rate increased, the influence of bubbles on solution resistance was mitigated, resulting in a slight increase in current performance. After analyzing the gaseous products, the sampled results of hydrogen and oxygen matched the theoretical yields, thereby confirming the validity of the system design and sampling method.
    Next, we conducted reactions using alkaline water solutions with three different glycerol concentrations. The results showed that When the glycerol concentration is 0.05 m, the consumption of glycerol as a reactant resulted in insufficient glycerol concentration at the electrode surface. This led to a competitive reaction between glycerol electrooxidation reaction and oxygen evolution reaction, making it difficult to completely suppress the production of oxygen. Based on the analysis of gaseous byproducts, the percentage of the oxygen evolution reaction in the anodic charge transfer was found to be 51%, 62%, and 71% when applying three different voltages of 2.4 V, 2.8 V, and 3.2 V, respectively. As the flow rate of the electrolyte increased, the glycerol mass transfer rate also increased due to forced convection, leading to a change in the competitive reactions. In the anodic charge transfer, the proportion of glycerol oxidation reaction gradually increased, resulting in a decrease in oxygen production. When the system Reynolds number reached 3000, the proportions of the oxygen evolution reaction in the anodic charge transfer decreased to 27%, 45%, and 53% for the three applied voltages mentioned above. This indicates the impact of forced convection in increasing the glycerol mass transfer rate and its effect on the competitive reactions. On the other hand, When the glycerol concentration is 2.1 m and 12 m, the electrode surface had sufficient glycerol concentration, leading to complete inhibition of the oxygen-producing reaction. Consequently, the safety concerns from the mixing of gaseous products were resolved.

    摘要 I Abstract III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧與探討 2 2.1 氣候變遷與氫能發展 2 2.2 氫氣生產方式介紹 3 2.2.1 灰氫(gray hydrogen) 3 2.2.1.1. 蒸氣重組反應(steam reforming) 3 2.2.1.2. 部分氧化反應(partial oxidation) 4 2.2.1.3. 氣化法(gasification) 4 2.2.2 藍氫(blue hydrogen) 6 2.2.3 綠氫(Green hydrogen) 6 2.2.3.1. 鹼性水電解器(AWE) 10 2.2.3.2. 陰離子交換薄膜電解器(AEMWE) 10 2.2.3.3. 質子交換薄膜水電解器(PEMWE) 10 2.3 電催化甘油氧化反應 11 2.3.1 反應熱力學 12 2.3.2 甘油高值化液相產物 13 2.4 電極材料 16 2.4.1 鎳電極於鹼性電解系統的反應機理 17 2.4.1.1. 鎳電極催化產氧反應(OER) 17 2.4.1.2. 鎳電極催化產氫反應(HER) 19 2.4.1.3. 鎳電極進行電催化甘油氧化反應(GEOR) 20 2.5 電化學反應中的質傳機制 23 2.5.1 擴散(diffusion) 23 2.5.2 對流(convection) 23 2.5.3 遷移(migration) 24 2.5.4 質傳速率影響 24 2.5.5 電極表面之流體邊界層 26 2.5.6 電極表面之擴散邊界層 31 2.5.7 極限電流法應用於質傳係數量測 33 2.6 過電壓及氣泡現象 35 2.7 程序強化 38 2.7.1 壓力波動 39 2.7.2 超重力場 40 2.7.3 流場 42 第三章 實驗設備與方法 43 3.1 實驗裝置 43 3.1.1 實驗流程圖 43 3.1.2 反應器 44 3.1.3 氣液分離槽 46 3.1.4 壓力試驗 47 3.2 實驗設備 48 3.2.1 電解液循環裝置 48 3.2.2 現場儀表 49 3.2.3 溫度控制 50 3.2.4 真空設備 51 3.2.5 電化學分析及產物分析儀器 52 3.3 實驗藥品 52 3.4 實驗架構 53 3.5 實驗步驟 55 3.6 電化學分析方法 58 3.6.1 循環伏安法(Cylic voltammetry,CV) 58 3.6.2 線性掃描伏安法(Linear sweep voltammetry, LSV) 59 3.6.3 計時安培法(Chronoamperometry, CA) 59 3.6.4 電化學交流阻抗圖譜(EIS) 60 3.7 產物分析 62 3.7.1 氣相層析儀 62 第四章 實驗結果與討論 63 4.1 電極材料確認 64 4.2 流體流態可視化(Flow visualization) 66 4.3 溶液物性數據 70 4.4 水電解反應 71 4.4.1 氣相產物分析 74 4.4.1.1. 系統體積量測 75 4.4.1.2. 系統逐氧(Purge) 76 4.4.1.3. 氣相產物取樣及分析方法 77 4.4.1.4. 氣體產量與法拉第效率計算 79 4.4.1.5. 氣相產物分析結果 81 4.5 電催化甘油氧化反應 87 4.5.1 S2甘油水溶液之電化學表現 87 4.5.2 S2甘油水溶液氣相產物分析 92 4.5.2.1. 2.4 V 定電壓計時安培法氣相產物分析 93 4.5.2.2. 2.8 V 定電壓計時安培法氣相產物分析 99 4.5.2.3. 3.2 V 定電壓計時安培法氣相產物分析 105 4.5.3 S3甘油水溶液之電化學表現 113 4.5.4 S3甘油水溶液氣相產物分析 118 4.5.4.1. 2.8 V 定電壓計時安培法氣相產物分析 118 4.5.5 S4甘油水溶液之電化學表現 123 4.5.6 S4甘油水溶液氣相產物分析 127 4.5.6.1. 2.8 V 定電壓計時安培法氣相產物分析 127 4.5.7 不同水溶液中競爭反應的綜合比較 133 第五章 結論 135 參考文獻 136

    [1] Oliveira, A.M., R.R. Beswick, and Y. Yan. (2021). A green hydrogen economy for a renewable energy society. Current Opinion in Chemical Engineering, 33.
    [2] Velazquez Abad, A. and P.E. Dodds. (2020). Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy, 138.
    [3] Ishaq, H., I. Dincer, and C. Crawford. (2022). A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy, 47(62), 26238-26264.
    [4] Park, C., et al. (2022). Economic valuation of green hydrogen charging compared to gray hydrogen charging: The case of South Korea. International Journal of Hydrogen Energy, 47(32), 14393-14403.
    [5] Sehested, J. (2006). Four challenges for nickel steam-reforming catalysts. Catalysis Today, 111(1-2), 103-110.
    [6] Sengodan, S., et al. (2018). Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews, 82, 761-780.
    [7] Knifton, J.F. (1985). Syngas reactions: IX. Acetic acid from synthesis gas. Journal of Catalysis, 96, 439-453.
    [8] Wagner, N.J., et al., Coal Gasification, in Applied Coal Petrology. 2008. p. 119-144.
    [9] Liu, K., Z. Cui, and T.H. Fletcher, Coal gasification. Hydrogen and syngas production and purification technologies. 2009. 156-218.
    [10] Yu, M., K. Wang, and H. Vredenburg. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.
    [11] Bauer, C., et al. (2022). On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 6(1), 66-75.
    [12] Brauns, J. and T. Turek. (2020). Alkaline Water Electrolysis Powered by Renewable Energy: A Review. Processes, 8(2).
    [13] Rashid, M.D., Al Mesfer, M. K., Naseem, H., & Danish, M. (2015). Hydrogen Production by Water Electrolysis: A Review of Alkaline Water
    Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis. International Journal of Engineering and Advanced Technology., 4(3).
    [14] Chatenet, M., et al. (2022). Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev, 51(11), 4583-4762.
    [15] Wu, Z.P., et al. (2020). Non‐Noble‐Metal‐Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 30(15).
    [16] Kaur, J., et al. (2020). Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol Rep (Amst), 27, e00487.
    [17] Zhou, Y., Y. Shen, and J. Piao. (2018). Sustainable Conversion of Glycerol into Value-Added Chemicals by Selective Electro-Oxidation on Pt-Based Catalysts. ChemElectroChem, 5(13), 1636-1643.
    [18] Fan, L., et al. (2020). Recent Progress in Electrocatalytic Glycerol Oxidation. Energy Technology, 9(2).
    [19] Wu, J., X. Yang, and M. Gong. (2022). Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device. Chinese Journal of Catalysis, 43(12), 2966-2986.
    [20] Verevkin, S.P., et al. (2015). Thermodynamic properties of glycerol: Experimental and theoretical study. Fluid Phase Equilibria, 397, 87-94.
    [21] Garvin, D.P., V B; White, Jr, H J, CODATA thermodynamic tables. 1987.
    [22] Bastos, M., Nilsson, S. O., Da Silva, M. D. R., Da Silva, M. A. R., & Wadsö, I. (1988). Thermodynamic properties of glycerol enthalpies of combustion and vaporization and the heat capacity at 298.15 K. Enthalpies of solution in water at 288.15, 298.15, and 308.15 K. The Journal of Chemical Thermodynamics, 20(11), 1353-1359.
    [23] Chase, M.W., & National Information Standards Organization (US), NIST-JANAF thermochemical tables. Vol. 9. 1998.
    [24] Suen, N.T., et al. (2017). Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 46(2), 337-365.
    [25] Reier, T., M. Oezaslan, and P. Strasser. (2012). Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2(8), 1765-1772.
    [26] Esposito, D.V., et al. (2010). Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed Engl, 49(51), 9859-62.
    [27] Yu, M., E. Budiyanto, and H. Tuysuz. (2022). Principles of Water Electrolysis and Recent Progress in Cobalt-, Nickel-, and Iron-Based Oxides for the Oxygen Evolution Reaction. Angew Chem Int Ed Engl, 61(1), e202103824.
    [28] Koj, M., J. Qian, and T. Turek. (2019). Novel alkaline water electrolysis with nickel-iron gas diffusion electrode for oxygen evolution. International Journal of Hydrogen Energy, 44(57), 29862-29875.
    [29] M.F. Kibria, M.S.M. (1996). Electrochemical studies of the nickel electrode for the oxygen evolution reaction. International Journal of Hydrogen Energy, 21(3), 179-182.
    [30] Lyons*, M.E.G. and M.P.B. . (2008). The Oxygen Evolution Reaction on Passive Oxide Covered Transition Metal Electrodes in Aqueous Alkaline Solution. Part 1-Nickel. Int. J. Electrochem. Sci, 3, 1386-1424.
    [31] Klaus, S., et al. (2015). Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. The Journal of Physical Chemistry C, 119(13), 7243-7254.
    [32] Bai, L., S. Lee, and X. Hu. (2021). Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction*. Angew Chem Int Ed Engl, 60(6), 3095-3103.
    [33] Oliveira, V.L., et al. (2015). Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C. Electrocatalysis, 6(5), 447-454.
    [34] Gao, M., et al. (2014). Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst. J Am Chem Soc, 136(19), 7077-84.
    [35] Trotochaud, L., et al. (2014). Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc, 136(18), 6744-53.
    [36] Angeles-Olvera, Z., et al. (2022). Nickel-Based Electrocatalysts for Water Electrolysis. Energies, 15(5).
    [37] B.E. Conway, M.S. (1964). Electrochemical reaction orders: Applications to the hydrogen- and oxygen-evolution reactions. Electrochimica Acta, 9(12), 1599-1615.
    [38] Lin, C., et al. (2018). Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem Sci, 9(33), 6803-6812.
    [39] Li, L.-F., Y.-F. Li, and Z.-P. Liu. (2020). Oxygen Evolution Activity on NiOOH Catalysts: Four-Coordinated Ni Cation as the Active Site and the Hydroperoxide Mechanism. ACS Catalysis, 10(4), 2581-2590.
    [40] Gong, M., et al. (2015). A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 9(1), 28-46.
    [41] Lasia, A. (2019). Mechanism and kinetics of the hydrogen evolution reaction. International Journal of Hydrogen Energy, 44(36), 19484-19518.
    [42] Mahmood, N., et al. (2018). Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv Sci (Weinh), 5(2), 1700464.
    [43] Houache, M.S.E., et al. (2019). Electrochemical Valorization of Glycerol on Ni-Rich Bimetallic NiPd Nanoparticles: Insight into Product Selectivity Using in Situ Polarization Modulation Infrared-Reflection Absorption Spectroscopy. ACS Sustainable Chemistry & Engineering, 7(17), 14425-14434.
    [44] Oliveira, V.L., et al. (2014). Studies of the reaction products resulted from glycerol electrooxidation on Ni-based materials in alkaline medium. Electrochimica Acta, 117, 255-262.
    [45] Yi, Q., et al. (2008). Methanol oxidation on titanium-supported nano-scale Ni flakes. Catalysis Communications, 9(10), 2053-2058.
    [46] Nagashree, K.L. and M.F. Ahmed. (2010). Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium. Journal of Solid State Electrochemistry, 14(12), 2307-2320.
    [47] M.A. Tehrani, R. and S. Ab Ghani. (2012). Electrocatalysis of free glycerol at a nanonickel modified graphite electrode and its determination in biodiesel. Electrochimica Acta, 70, 153-157.
    [48] Schlichting, H., & Kestin, J., Boundary layer theory. Vol. 121. 1961, New York: McGraw-Hill.
    [49] Mohamed, M.K.A., Shah, N. M., Ismail, N. A., Jamil, F., Hashim, N., Salleh, M. Z., & Hashim, H. (2018). Convective boundary layer flow in a nanofluid. Journal of Sciences and Management Research, 3, 28-39.
    [50] Geankoplis, C.J., Transport Processes and Separation Process Principles. 2003, Prentice Hall NJ.
    [51] Wilk, J. (2014). A review of measurements of the mass transfer in minichannels using the limiting current technique. Experimental Thermal and Fluid Science, 57, 242-249.
    [52] Makinde, O.D. and A. Aziz. (2011). Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences, 50(7), 1326-1332.
    [53] Berger, F.P., & Hau, K. F. L. (1977). Mass transfer in turbulent pipe flow measured by the electrochemical method. International Journal of Heat and Mass Transfer, 20, 1185-1194.
    [54] Kim, I.H., & Chang, H. N. (1983). Experimental study of mass transfer around a turbulence promoter by the limiting current method. International Journal of Heat and Mass Transfer, 26(7), 1007-1016.
    [55] Cañizares, P., García-Gómez, J., Fernández de Marcos, I., Rodrigo, M. A., & Lobato, J. (2006). Measurement of mass-transfer coefficients by an electrochemical technique. Journal of chemical education, 83(8), 1204.
    [56] Wang, M., et al. (2014). The intensification technologies to water electrolysis for hydrogen production – A review. Renewable and Sustainable Energy Reviews, 29, 573-588.
    [57] Scott, K. (2018). Process intensification: An electrochemical perspective. Renewable and Sustainable Energy Reviews, 81, 1406-1426.
    [58] Chandran, P., S. Bakshi, and D. Chatterjee. (2015). Study on the characteristics of hydrogen bubble formation and its transport during electrolysis of water. Chemical Engineering Science, 138, 99-109.
    [59] Sillen, C.W.M.P., Barendrecht, E., Janssen, L. J. J., & Van Stralen, S. J. D. (1980). Gas bubble behaviour during water electrolysis. In Hydrogen as an Energy Vector: Proceedings of the International Seminar, held in Brussels, 12-14, 328-348.
    [60] Matsushima, H., Y. Fukunaka, and K. Kuribayashi. (2006). Water electrolysis under microgravity. Electrochimica Acta, 51(20), 4190-4198.
    [61] Balzer, R.J., & Vogt, H. . (2002). Effect of electrolyte flow on the bubble coverage of vertical gas-evolving electrodes. Journal of the Electrochemical Society, 150.
    [62] Robert, E., & Tobias, C. W. (1959). On the conductivity of dispersions. Journal of the Electrochemical Society, 106(9), 827.
    [63] Ursua, A., L.M. Gandia, and P. Sanchis. (2012). Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE, 100(2), 410-426.
    [64] Wang, M., Z. Wang, and Z. Guo. (2015). Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection. Journal of Electroanalytical Chemistry, 744, 25-31.
    [65] Cheng, H., Scott, K., & Ramshaw, C. (2002). Chlorine evolution in a centrifugal field. Journal of applied electrochemistry, 32, 831-838.
    [66] Lao, L., C. Ramshaw, and H. Yeung. (2011). Process intensification: water electrolysis in a centrifugal acceleration field. Journal of Applied Electrochemistry, 41(6), 645-656.
    [67] Yu, Y., et al. (2021). High Centrifugal Field Coupling with Electrolyte Circulation Internals: Process Intensification toward Efficient Water Electrolysis for Hydrogen Storage via Power-to-Gas. Journal of The Electrochemical Society, 168(9).
    [68] Wang, M., Z. Wang, and Z. Guo. (2009). Understanding of the intensified effect of super gravity on hydrogen evolution reaction. International Journal of Hydrogen Energy, 34(13), 5311-5317.
    [69] Wang, M., Z. Wang, and Z. Guo. (2010). Water electrolysis enhanced by super gravity field for hydrogen production. International Journal of Hydrogen Energy, 35(8), 3198-3205.
    [70] Nagai, N., Takeuchi, M., & Furuta, T. (2006). Effects of bubbles between electrodes on alkaline water electrolysis efficiency under forced convection of electrolyte. In Proceedings of 16th world hydrogen energy conference, Lyon, 1-10.
    [71] Xue, H., et al. (2020). Design and investigation of a two-stage vacuum ejector for MED-TVC system. Applied Thermal Engineering, 167.
    [72] Marken, F., A. Neudeck, and A.M. Bond, Cyclic Voltammetry, in Electroanalytical Methods. 2010. p. 57-106.
    [73] Kissinger, P.T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of chemical education, 60(9), 702.
    [74] Brownson, D.A., D.K. Kampouris, and C.E. Banks. (2012). Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev, 41(21), 6944-76.
    [75] Elgrishi, N., et al. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197-206.
    [76] Kim, T., et al. (2020). Applications of Voltammetry in Lithium Ion Battery Research. Journal of Electrochemical Science and Technology, 11(1), 14-25.
    [77] Harrington, D.A. and P. van den Driessche. (2011). Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochimica Acta, 56(23), 8005-8013.
    [78] Cesiulis, H., et al., The Study of Thin Films by Electrochemical Impedance Spectroscopy, in Nanostructures and Thin Films for Multifunctional Applications. 2016. p. 3-42.
    [79] Randles, J.E.B. (1947). Kinetics of rapid electrode reactions. Discussions of the faraday society, 1, 11-19.
    [80] Lasia, A., Electrochemical impedance spectroscopy and its applications. 2002: Springer US.
    [81] Choi, W., et al. (2020). Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. Journal of Electrochemical Science and Technology, 11(1), 1-13.
    [82] Iturbide Jiménez, F., Mendoza Jasso, A. J., Antonio García, A., & Santiago Alvarado, A. (2018). Design and construction of an apparatus to visualize incompressible fluid flow in several regimes. Revista mexicana de física E,, 64.2, 133-138.
    [83] Errico, G., Ortona, O., Capuano, F., & Vitagliano, V. . Diffusion coefficients for the binary system glycerol+ water at 25 C. A velocity correlation study. Journal of Chemical & Engineering Data,, 49(6), 1665-1670.

    無法下載圖示 全文公開日期 2028/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE