簡易檢索 / 詳目顯示

研究生: 任翔偵
SHIANG-JEN REN
論文名稱: 有機光感測器:利用有機阻擋層降低元件暗電流之機制探討
Reduction of dark current density in organic photodetector by utilizing an organic blocking layer
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
徐世祥
Shih-Hsiang Hsu
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 電子阻擋層暗電流密度有機光感測器外部量子效率
外文關鍵詞: electron blocking layer, organic photodetector, dark current density, EQE
相關次數: 點閱:289下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文分為兩個部分,第一部份討論 Molybdenum oxide(MoO3)摻雜於4,4’Cyclohexylidenebis[N.N-bis(4-methylphenyl)benzenamine](TAPC)中作對電子阻擋層對有機光感測器之效用。電子阻擋層為光感測器中主要結構之一,其功能在於阻止外部電子從氤錫氧化物 (Indium Tin Oxide, ITO)電極注入,因此適合做為電子阻擋層的材料需具有較低的電子漂移率與較高的最低未佔有軌域(Lowest unoccupied molecular orbital, LUMO)。TAPC為本論文所選擇之電子阻擋層,其同時具有上述兩個特性。研究結果顯示使用TAPC確實具有阻擋電子的效果,但其光電轉換效率不佳,故本論文摻雜了MoO3於其中。當我們使用5 wt%摻雜濃度的MoO3時,最佳化元件在逆偏壓3 V下具有1.11 nA/cm2的暗電流密度,此外在360 nm波長下的外部量子效率(External Quantum Efficiency, EQE)也達到了41.8%,而對於特定波段的感測度(Detectivity; D*)也超過了1012 Jones,與未摻雜MoO3之元件比較,特性改進了許多。因此,本論文認為MoO3摻進TAPC時可減少電子阻擋層與主動層之能階差,進而提升了電洞萃取效果。
第二部分討論可見光光感測器。以DTCPB與C70作為見主動層,並調整兩材料的比例。當C70比例增加時,元件暗電流降低,EQE上升幅度明顯。最佳的元件在-3 V時,暗電流約8 nA/cm2,EQE突破80%。由此可知,當變更主動層施體與受體材料比例時,主動層中激子拆解效率,以及載子傳輸特性也會改變,兩者之間取得平衡的重要性不亞於電子阻擋層選擇。


This thesis has two parts. In the first part, we discuss the function of MoO3- doped TAPC, which serves as an electron blocking layer. As the main unit of the organic photodetector, Electron blocking layer has the ability to hinder the external electrons from injecting into the ITO. The proper material for electron blocking layer should contain low electron mobility and high LUMO. Therefore, we chose TAPC as electron blocking layer. According to the result, we find using TAPC could certainly suppress the electron injection but with poor optical-to-electrical conversion rate. In order to solve this problem, we doped MoO3 ¬into TAPC. Under 3V reverse bias, the dark current density was 1.11nA/cm2 and the EQE at 360nm reaches to 41.8% when the [MoO3] is 5wt%,. Therefore, we consider that doping MoO3 into TAPC could decrease the barrier between electron blocking layer and the active layer, and enhance the hole extraction ability.
The second part focuses on Visible Light Organic Photodetector. By changing the C70/DTCPB ratio, we proof that the charge transmission and exciton dissociation are critical for organic photodetector. When the C70/DTCPB ratio increases under 3V reverse bias, the dark current decreases and the EQE increases dramatically. The best magnitude of dark current density is approximately 8.3nA/cm2, and the EQE is over 80%. Based on this result, adjusting the ratio of electron donor/acceptor materials could enhance the exciton dissociation as well change the charge transmission ability, which means the importance of balancing between electron donor/acceptor materials is equal to choosing a good electron blocking layer.

誌謝…………………………………………………………………………....….......III 中文摘要………………………………………………………….……...……...……IV Abstract…………………………………………………….…………………….....…V 圖目錄…………………………………………………………………………..….…IX 表目錄……………………………………………………………………………...…XI Chapter 1 緒論..........................................................................................................1 1.1 前言…………………………………………………………………………...….1 1.2 OPD與OPV的差異…………………………………………………………….2 1.3 OPD影像感測器發展及文獻回顧……………………………………………...2 1.3.1 OPD影像感測器發展……………………………………………………..…..2 1.3.2 文獻回顧…………………………………………………………….................4 1.4 OPD未來趨勢……………………………………………………………...6 Chapter 2 理論基礎.............................................................................................7 2.1 有機半導體傳輸機制....................................................................................7 2.2 有機光感測器工作與光伏打電池工作原理...............................................10 2.3 光感測器量測單位與指標定義...................................................................14 Chapter 3 實驗流程與量測設備.......................................................................17 3.1 製程設備以及量測儀器.............................................................................17 3.1.1 超音波震盪清洗機............................................................................17 3.1.2 加熱板................................................................................................17 3.1.3 旋轉塗佈機........................................................................................18 3.1.4 紫外光曝光機....................................................................................18 3.1.5 氧電漿清洗機....................................................................................19 3.1.6 真空熱蒸鍍系統................................................................................20 3.1.7 手套箱系統........................................................................................23 3.1.8 膜厚儀................................................................................................25 3.1.9 太陽光模擬器....................................................................................25 3.1.10 外部量子效率量測系統....................................................................26 3.1.11 光電子光譜儀(AC-2) ........................................................................27 3.1.12 UV-VIS光譜儀................................................................................28 3.1.13 紫外光以及可見光LED....................................................................29 3.1.14 LED驅動控制器..............................................................................29 3.1.15 頻率響應以及Transient response量測系統....................................30 3.1.16 LDR量測系統.................................................................................31 3.1.17 光功率計............................................................................................31 3.1.18 材料純化系統....................................................................................31 3.1.19 原子力顯微鏡(Atomic force microscope, AFM)…………..………32 3.2 實驗前置準備.................................................................................................33 3.2.1有機材料純化....................................................................................33 3.2.2 黃光微影製程....................................................................................33 3.3 實驗步驟.........................................................................................................36 3.3.1 元件基板清洗....................................................................................36 3.3.2 氧電漿清潔........................................................................................37 3.3.3 熱蒸鍍製程........................................................................................37 3.3.4 元件封裝............................................................................................38 Chapter 4 研究結果與討論...................................................................40 4.1 電子阻擋層(Electron blocking layer, EBL)之選擇.......................................40 4.2 TAPC摻雜MoO3之EBL.............................................................................41 4.3 C60紫外光感測元件特性分析......................................................................43 4.3.1 元件J-V特性....................................................................................44 4.3.2 元件EQE以及Responsivity............................................................46 4.3.3 Detectivity (D*)..................................................................................47 4.3.4 Frequency response and Transient response......................................48 4.3.5 LDR分析...........................................................................................50 4.4 可見光OPD分析...........................................................................................52 4.4.1 元件J-V特性....................................................................................52 4.4.2 元件EQE與Responsivity................................................................54 4.4.3 元件動態分析....................................................................................55 4.4.4 LDR分析...........................................................................................57 Chapter 5 結論.......................................................................................59 參考文獻..................................................................................................................60

[1] K. Gerasimos, C. Jason, L. Larissa and S. Edward H., “Sensitive solution- processed visible-wavelength photodetectors,” Nat. Photonics, 1, 531 (2007).
[2] K. H. Lee, D. S. Leem, J. S. Castrucci, K. B. Park, X. Bulliard, K. S. Kim, Y. W. Jin, S. Lee, T. P. Bender and S. Y. Park, “Green-Sensitive Organic Photodetectors with High Sensitivity and Spectral Selectivity Using Subphthalocyanine Derivatives,” ACS Appl. Mater. Interfaces, 5, 13089 (2013).
[3] V. Agranov, V. Berezin and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron Devices, 50, 4 (2003).
[4] J. A. Theil, R. Snyder, D. Hula, K. Lindahl, H. Haddad and J. Roland, “a-Si:H photodiode technology for advanced CMOS active pixel sensor imagers,” J. Non-Cryst. Solids, 299-302, 1234 (2002).
[5] J. B. Barton, R. F. Cannata and S. M. Petronio, “InGaAs NIR focal plane arrays for imaging and DWDM applications,” Proc. SPIE, 4721, 37 (2002).
[6] R. D. J. Vuuren, A. Armin, A. K. Pandey, P. L. Burn and P. Meredith“Organic Photodiodes : The Future of Full Color Detection and Image Sensing,” Adv. Mater., 28, 4766 (2016).
[7] R. Shinar and J. Shinar, Organic Electronics in Sensors and Biotechnology, Ch.6 (2009).
[8] G. Yu, K. Pakbaz and A. J. Heeger, “Semiconducting polymer diodes : Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett., 64, 3422 (1994).
[9] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm,” Science, 325, 1665 (2009).

[10] F. Guo, Z. Xiao, and J. Huang, “Fullerene Photodetectors with a Linear Dynamic Range of 90 dB Enabled by a Cross-Linkable Buffer Layer,” Adv. Optical Mater., 1 ,289 (2014).
[11] D. Yang and D. Ma., “1,1-Bis[(di-4-tolylamino)phenyl]cyclohexane for fast response organic photodetectors with high external efficiency and low leakage current,” J. Mater. Chem. C, 1, 2054 (2013).
[12] A. Armin, I. Kassal, P. E. Shaw, M. Hambsch, M. Stolterfoht, D. M. Lyons, J. Li, Z. Shi, P. L. Burn, P. Meredith, “Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways,” J. Amer. Chem. Soc., 136, 11465 (2014).
[13] G. Yu, J. Wang, J. McElvain and A. J. Heeger, “Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers,” Adv. Mater., 10, 1431 (1998).
[14] S. Aihara, M. Kubota, “Trend in research on organic imaging devices,” Broadcast Tech., 49, 14 (2012).
[15] H. Seo, S. Aihara, M. Namba, T. Watabe, H. Ohtake, M. Kubota, N. Egami, T. Hiramatsu, T. Matsuda, M. Furuta, H. Nitta and T. Hirao, “Stacked color image sensor using wavelength-selective organic photoconductive films with zinc-oxide thin film transistors as a signal readout circuit,” Proc. SPIE Sensors, Cameras and Systems for Industrial/Scientific Applications XI, 7536, 753602 (2010).
[16] H. Seo, S. Aihara, T. Watable, H. Ohtake, T. Sakai, M. Kubota, N. Egami, T. Hiramatsu, T. Matsuda and M. Furuta, “A 128×96 Pixel Stack-Type Color Image Sensor: Stack of Individual Blue-, Green-, and Red-Sensitive Organic Photoconductive Films Integrated with a ZnO Thin Film Transistor Readout Circuit,” Jpn. J. Appl. Phys., 50, 024103 (2011).
[17] T. Sakai, H. Seo, S. Aihara, M. Kubota, N. Egami, D. Wang and M. Furuta, “A 128×96 Pixel, 50μm Pixel Pitch Transparent Readout Circuit Using Amorphous In–Ga–Zn–O Thin-Film Transistor Array with Indium–Tin Oxide Electrodes for an Organic Image Sensor,” Jpn. J. Appl. Phys, 51, 010202 (2012).
[18] J. Ohta, Smart CMOS Image Sensors and Application, Ch. 3 (2007).
[19] S. J. Lim, D. S. Leem, K. B. Park, K. S. Kim, S. Sul, K. Na, G. H. Lee, C. J. Heo, K. H. Lee, X. Bulliard, R. I. Satoh, T. Yagi, T. Ro, D. Im, J. Jung, M. Lee, T. Y. Lee , M. G. Han, Y. W. Jin and S. Lee, “Organic-on-silicon complementary metal–oxide– semiconductor colour image sensors,” Sci. Rep., 5, 7708 (2015).
[20] X. Liu, H. Wang, T. Yang, W. Zhang and X. Gong, “Solution-Processed Ultrasensitive Polymer Photodetectors with High External Quantum Efficiency and Detectivity,” ACS Appl. Mater. Interfaces, 4 ,3701 (2012).
[21] F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bu and J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nature Nanotechnology, 7, 798 (2012).
[22] I . K. Kim, B. N. Pal, M. Ullah, P. L. Burn, S.-C. Lo, P. Meredith and E. B. Namdas, “High‐Performance, Solution‐Processed Non‐polymeric Organic Photodiodes,” Adv. Optical Mater., 3 , 50 (2015).
[23] A. Armin, M. Hambsch, l.-K. Kim, P. L. Burn, P. Meredith and E. B. Namdas,“Thick junction broadband photodiodes,”Laser Photonics Rev., 8, 924 (2014)
[24] R. Dong, C. Bi, Q. Dong, F. Guo, Y. Yuan, Y. Fang, Z. Xiao, J. Huang, “An Ultraviolet‐to‐NIR Broad Spectral Nanocomposite Photodetector with Gain,” Adv. Optical Mater., 2, 549 (2014).
[25] Q. Lin, A. Armin, D. M. Lyons, P. L. Burn and P. Meredith, “Low Noise, IR‐Blind Organohalide Perovskite Photodiodes for Visible Light Detection and Imaging,” Adv. Mater., 27, 2060 (2015).
[26] I. K. Kim , X. Li , M. Ullah , P. E. Shaw , R. Wawrzinek , Ebinazar B. Namdas and S. C. Lo, “High‐Performance, Fullerene‐Free Organic Photodiodes Based on a Solution‐Processable Indigo,” Adv. Mater., 27, 6390 (2015).
[27] D. S. Lee, K. H. Lee, Y. N. Kwon, D. J .Yun, K. B. Park, S. J. Lim, K. S. Kim, Y. W. Jin and S. Lee, “Low dark current inverted organic photodetectors employing MoOx:Al cathode interlayer,” Org. Electron., 24, 176 (2015).
[28] Y. Guo, C. Liu, H. Tanaka and E. Nakamura, “Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light,” J. Phys. Chem. Lett., 6, 535 (2015).
[29] S. B. Lim, C. H. Ji, I. S. Oh, S. Y. Oh, “Reduced leakage current and improved performance of an organic photodetector using an ytterbium cathode interlayer,” J. Mater. Chem. C, 4, 4920 (2016).
[30] T. N. Wang, Y. F. Hu, Z. B. Deng, Y. Wang, L. F. Lv, L. J. Zhu, Z. D. Lou, Y. B. Hou and F. Teng, “High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer,” RSC Adv., 7, 1743 (2017).
[31] I. K. Kim and J. H. Jo, “High Detectivity Organic Photodetectors With Molybdenum (VI) Oxide and C-60 Layers,” IEEE Sens. J., 16, 4767 (2016).
[32] S. H. Kim, S. Heo, D. J. Yun, R. Satoh, G. Park and K. S. Kim, “Dark current reduction of small molecule organic photodetectors by controlling gap states of molybdenum oxide buffer layers,” Jpn. J. Appl. Phys., 55, 091601 (2016).
[33] J. Herrbach, A. Revaux, D. Vuillaume and A. Kahn, “P-doped organic semiconductor: Potential replacement for PEDOT:PSS in organic photodetectors,” Appl. Phys. Lett., 109, 073301 (2016).
[34] X. Bulliard, Y. W. Jin, G. H. Lee, S. Yun, D. S. Lee, T. Ro, K. B. Park, C. J .Heo, R. I. Satoh, T. Yagi, Y. S. Choi, S. J. Lim and S. Lee, “Dipolar donor-acceptor molecules in the cyanine limit for high efficiency green-light-selective organic photodiodes,” J. Mater. Chem. C, 4, 1117 (2016).
[35] M. G. Han, K. B. Park, X. Bulliard, G. H. Lee, S. Yun, D. D. Lee, C. J. Heo, T. Yagi, R. Sakurai, T. Ro, S. J. Lim, S. Sul, K. Na, J. Ahn, Y. W. Jin and S. Lee, “Narrow-Band Organic Photodiodes for High-Resolution Imaging,” ACS Appl. Mater. Interfaces, 8, 26143 (2016).
[36] W. B. Wang, D. W. Zhao, F. J .Zhang, L. D. Li, M. D. Du, C. L. Wang, Y. Yu, Q. Q. Huang, M. Zhang, L. L. Li, J. L. Miao, Z. Lou, G. Z. Shen, Y. Fang and Y. F. Yan, “Highly Sensitive Low-Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Near-Infrared Region,” Adv. Funct. Mater., 27, 1703953 (2017).
[37] W. D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys, 43, 5033 (1972).
[38] R. M. Glaeser and R. S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models,” J. Chem. Phys., 44, 3797 (1966).
[39] S. R. Forrest, “The Limits to Organic Photovoltaic Cell Efficiency” MRS Bulletin, 30, 28 (2005).
[40] I. G. Hill, A. Kahn, Z. G. Soos, and J. Pascal, R.A., “Charge-separation energy in films of π-conjugated organic molecules,” Chem. Phys. Lett., 327, 81 (2000).
[41] M. Knupfer, “Exciton binding energies in organic semiconductors,” Appl. Phys., 77, 623 (2003)
[42] C. Lungenschmied, G. Dennler, H. Neugebauer, S. N. Sariciftci, M.Glatthaar, T. Meyer, and A. Meyer, “Flexible, long-lived, large-area, organic solar cells,”Sol. Energy Mater. Sol. Cells, 91, 379 (2007).
[43] B. Leckner, “The spectral distribution of solar radiation at the earth's surface-elements of a model,” Sol. Energy, 20, 143 (1978).
[44] P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys., 93, 3693 (2003).
[45] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells,” Adv. Mater., 19, 1551 (2007).
[46] H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, et al., “Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy,” J. Am. Chem. Soc., 130, 3030 (2008).
[47] J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges,” Accounts Chem. Res., 42,1691 (2009).
[48] P. He, S. D. Wang, W. K. Wong, L. F. Cheng, C. S. Lee, S. T. Lee, et al., “Vibrational analysis of oxygen-plasma treated indium tin oxide,” Chem. Phys. Lett., 370, 795 (2003).
[49] P. E. Keivanidis, S. H. Khong, P. K. H. Ho, N. C. Greenham, R. H. Friend,“All-solution based device engineering of multilayer polymeric photodiodes: Minimizing dark current,” Appl. Phys. Lett., 94, 173303 (2009)
[50] H. Shekhar, O. Solomeshch, D. Liraz and N. Tessler, “Low dark leakage current in organic planar heterojunction photodiodes,” Appl. Phys. Lett., 111 223301 (2017).
[51] C. C. Lee, C. H. Yuan, S. H. Liu and Y. S. Shih, “ Efficient Deep Blue Organic Light-Emitting Diodes Based on Wide Band Gap 4-Hydroxy-8-Methyl- 1.5-Naphthyridine Aluminum Chelate as Emitting and Electron Transporting Layer,” J. Disp. Technol, 7, 454 (2011).
[52] H. Lee, J. Y. Kim and C. Lee, “Improvement of Power Efficiency in Phosphorescent White Organic Light-Emitting Diodes Using p-Doped Hole Transport Layer,” Int. J. Photoenergy, 581421 (2012).
[53] J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl and A. Kahn, “Transition metal oxides for organic electronics: energetics, device physics and applications,” Adv. Mater., 24, 5408 (2012).
[54] K. Schulze, C. Uhrich, R. Schüppel, K. Leo and M. Pfeiffer, “Efficient heterojunction organic solar cells with high photovoltage containing a low gap oligothiophene derivative,” Proc. Of SPIE Organic Optoelectronics and Photonics II, 6192 (2006).
[55] I. K. Kim, B. N. Pal, M. Ullah, P. L. Burn, S.-C. Lo, P. Meredith and E. B. Namdas, “High-Performance, Solution-Processed Non-polymeric Organic Photodiodes,” Adv. Optical Mater., 3, 50 (2015).
[56] J. D. Zimmerman, B. Song, O. Griffith and S. R. Forrest, “Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics,” Appl. Phys. Lett., 103, 243905 (2013).
[57] Y. Fang, F. Guo, Z. Xiao and J. Huang, “Large Gain, Low Noise Nanocomposite Ultraviolet Photodetectors with a Linear Dynamic Range of 120 dB,” Adv. Optical Mater. 2, 348 (2014).
[58] R. Nie, Z. Zhao and X. Deng, “Roles of electrode interface on the performance of organic photodetectors,” Synthetic Met., 227, 163 (2017).
[59] B. Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu and Y. Yang, “Plastic Near-Infrared Photodetectors Utilizing Low Band Gap Polymer,” Adv. Mater., 19, 3979 (2007).
[60] T. Morimune, H. Kajii and Y. Ohmori, “Frequency Response Properties of Organic Photo-Detectors as Opto-Electrical Conversion Devices,” J. Disp. Technol., 2, 170 (2006).
[61] M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet and L. Hirsch, “Long-Term Stable Organic Photodetectors with Ultra Low Dark Currents for High Detectivity Applications,” Sci. Rep., 6, 39201 (2016).

QR CODE