簡易檢索 / 詳目顯示

研究生: 黃?守
Yi-Shou Huang
論文名稱: 疏水和親水藥物在碳納米角/ 氧化鐵碳點上的雙重負載
Dual-loading of hydrophobic and hydrophilic drugs on carbon nanohorns/Fe3O4@carbon dots
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 丘力文
Lik Voon Kiew
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 65
中文關鍵詞: 碳納米角藥物載體氧化鐵
外文關鍵詞: Carbon nanohorns, Dual loading, Drug delivery system
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

碳納米角是碳同素異形體之一,呈約100 nm大小的球形結構。它的石墨成分使其對不同類型的芳香族系列藥物分子具有很高的吸附能力,可用於抗癌化學療法。特別是,對碳納米角進行酸處理時,會有羥基,羧酸和醚等官能化。此外,由於已確認它們對人體無毒,因此它們是優選的候選藥物遞送載體之一。因此,在這項工作中,我們專注於使用碳納米角作為化學療法,熱療和光動力療法(PDT)等組合療法的遞送系統。表現出良好的磁響應的氧化鐵納米粒子能夠進行高溫治療。同時,碳點由於其產生單一態氧的特性而具有光動力學療法(PDT)。
對於共同裝載的藥物實驗,喜樹鹼和吉西他濱連續地被裝載在碳納米角上。測量了吉西他濱釋放的溫度依賴性,在較高溫度下提高藥物釋放,但喜樹鹼未釋放。對於PDT研究,測量了CNHacid/Fe3O4 @ Cdots產生的單一態氧。此外,已經進行了藥物釋放和光照射的組合,並顯示出良好的藥物釋放結果。


Carbon nanohorns are one of carbon allotropies and take a spherical structure of about 100 nm size. Its graphitic component makes them to have high adsorption capacity of different types of aromatic series drug molecules for anti-cancer chemotherapy. Especially, when Carbon nanohorns were acid-treated, it was functionalized by hydroxyl, carboxyl acid, ether and so on. Moreover, since they are confirmed to be nontoxic on human bodies, they are one of preferable candidates as drug delivery carrier. Thus, in this work, we focus on the use of carbon nanohorns as a delivery system for combination therapy like chemotherapy, hyperthermia and photodynamic therapy (PDT). Iron oxide nanoparticles that displayed a good magnet response were capable of hyperthermia. Meanwhile, the carbon dots due to its property to generate singlet oxygen were capable of photodynamic therapy (PDT).
For co-loading drug experiment, camptothecin and gemcitabine were loaded sequentially on carbon nanohorns. The temperature dependency of gemcitabine release was measured and resulted higher drug release in higher temperature, although camptothecin didn’t release.
For the PDT study, the singlet oxygen generated by carbon nanohron/Fe3O4@carbon dots was measured. Furthermore, the combination of drug release and light irradiation has been performed and showed a good result in drug release.

CONTENT ABSTACT 1 摘要 2 ACKNOWLEDGEMENT 3 CONTENT 4 LIST OF FIGURES 5 LIST OF TABLES 8 CHARTER1 9 1.1 INTRODUCTION 9 1.2 MOTIVATION AND OBJECTION OF THE WORK 18 CHARPTER 2 20 2.1 MARTERIALS AND REAGENTS 20 2.2 INSTRUMENT 20 2.3 MATERIAL PREAPAERATION 21 2.3.1 Preparation of acid-treated carbon nanohorns (SWNHacid) 21 2.3.2 Preparation of Fe3O4 attached on SWNHacid (Fe3O4/SWNHacid) 21 2.3.3 Preparation of carbon-dots coated on iron oxide nanoparticle (Fe@Cdots) 22 2.3.4 Preparation of CNHacid/Fe3O4@Cdots 23 2.4 QUANTUM YIELD OF CACUALTION 24 2.5 SINGLET OXYGEN GENERATION 25 2.6 DRUG LOADING AND RELEASE 26 2.6.1 Drug loading 26 2.6.2 Drug release 29 CHAPTER3 30 3.1 CHARACTERIZATION OF MATERIAL 30 3.2 QUANTUM YIELD 36 3.3 SINGLET OXYGEN GENERATION 38 3.4 DRUG LOADING AND RELEASE 41 A. Drug loading 41 B. Drug release 46 CHARPTER4 57 REFERANCE 59

REFERANCE
1. Bharali, D. J., & Mousa, S. A. (2010). Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacology & therapeutics, 128(2), 324-335.
2. American Cancer Society. Cancer Facts and Figures 2017. Atlanta: AmericanCancerSociety; 2017.
3. Sutradhar, K.B., Amin,Md L. Nanotechnology in Cancer Drug Delivery and Selective Targeting. ISRN Nanotechnology . 2014
4. Keemi Lim, Zuratul A.A. Hamid, in Applications of Nanocomposite Materials in Drug Delivery, 2018:Polymer nanoparticle carriers in drug delivery systems:Drug delivery: Present, past, and future of medicine.
5. Shen, J., Zhang, T., Cai, Y., Chen, X., Shang, S., & Li, J. (2017). Highly fluorescent N, S-co-doped carbon dots: synthesis and multiple applications. New Journal of Chemistry, 41(19), 11125-11137.
6. Michaela Riethmüller , Nils Burger and Georg Bauer, Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling, 2015.07.006
7. Glushkovskaya,S., Sokolovski, S.G., Goltsov A., Gekaluyk A.S., Saranceva, E.I., Bragina O.A., Tuchin V.V., Rafailov E.U.. Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology. 2017.05.001
8. Jeffrey R. Kanofsky, Determining the mechanism for photosensitized oxidations
9. Thmermo science, learn XPS, https://xpssimplified.com/whatisxps.php
10. Dobson, J. M., Hohenhaus, A. E., & Peaston, A. E. (2008). Cancer chemotherapy. Small Animal Clinical Pharmacology 2nd ed.(Maddison, JE, Page, SW and Church, DB eds.), Saunders Elsevier, Edinburgh, 330-366.
11. Parhi, P., Mohanty, C., & Sahoo, S. K. (2012). Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug discovery today, 17(17-18), 1044-1052.
12. Liu, L. F., Desai, S. D., LI, T. K., Mao, Y., Sun, M. E. I., & SIM, S. P. (2000). Mechanism of action of camptothecin. Annals of the New York Academy of Sciences, 922(1), 1-10.
13. Toschi, L., Finnochiaro, G., Bartolini, S., Gioia, V., Capuzzo, F., Role of Gemcitsbine in cancer therapy. Future Oncology (2005) 1 (1) 7-17.
14. Anonymous.https://www.cancercenter.com/cancer-drugs/gemcitabine/.Cancer treatments. Centers of America.
15. Liu, L. F., Desai, S. D., LI, T. K., Mao, Y., Sun, M. E. I., & SIM, S. P. (2000). Mechanism of action of camptothecin. Annals of the New York Academy of Sciences, 922(1), 1-10.
16. Frese, S., Schüller, A., Frese-Schaper, M., Gugger, M., & Schmid, R. A. (2009). Cytotoxic effects of camptothecin and cisplatin combined with tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) in a model of primary culture of non-small cell lung cancer. Anticancer research, 29(8), 2905-2911.
17. WikiLectures. https://www.wikilectures.eu/w/Hyperthermia_therapy
18. T. T. Meiling, P. J. Cywinski, and I. Bald, White carbon: fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis. Scientific reports, 2016, 6, 28557.
19. Schneider J et al. Molecular Fluorescence in Citric Acid-Based Carbon Dots. J. Phys. Chem. C 2017, 121, 2014−2022
20.
21. Kong, T., Hao, L., Wei, Y., Cai, X., & Zhu, B. (2018). Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell proliferation, 51(5), e12488.
22. Zhou, L., Zhou, L., Wei, S.H., Ge, X.F., Zhou, J.H., et al. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology 135 (2014) 7–16
23. Yang J.X, Su, H., Cai, L. Liu, S.,Chai, Y., Zhang, C., Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metasses. Theranostics 2018, Vol. 8, Issue 7. 2018.
24. Wu, Z.H., Liu, Z.X., Yuan, Y.H. Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. : J. Mater. Chem. B, 2017, 5, 3794
25. M. Aronniemi, J. Sainio, J., Lahtinen. Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surface Science 578 (2005) 108–123.
26. Jha, S., Pramod Kumar Sharma, Rishabha Malviya. Hyperthermia: Role and Risk Factor for Cancer Treatment. 2016,
27. Dewitt, M.R., Alison, M.P., Robertson, J., Rylander C.G., Rylander, M.N., Influence of Hyperthermia on efficacy and uptake carbon nanohorn-cisplatin conjugates. 2014, Vol. 136 / 021003-1. Journal of Biomedical Engineeering.
28. Yang J.X, Su, H., Cai, L. Liu, S.,Chai, Y., Zhang, C., Dual Chemodrug-Loaded Single-Walled Carbon Nanohorns for Multimodal Imaging-Guided Chemo-Photothermal Therapy of Tumors and Lung Metasses. Theranostics 2018, Vol. 8, Issue 7. 2018.
29. Miyawaki, J., Matsumura, S., Yuge, R., Murakami, T., Sato, S., Tomida, A., ... & Tsuchida, K. (2009). Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. ACS nano, 3(6), 1399-1406.
30. Matsumura, S., Ajima, K., Yudasaka, M, Ijima, S. Shiba, K. Dispersion of Cisplatin-Loaded Carbon Nanohorns with Comprised of an Artificial Peptide Aptamer and Polyethylene Glycol. VOL. 4, NO. 5, 723–729 MOLECULAR PHARMACEUTICS 723.
31. Wicaksono, K. Effect of NH2 Doping in Carbon Dots on Singlet Oxygen Generation. Master Thesis. NTUST. 2018.
32. Su, Jin Hao. Preparation and Characterization of Iron Oxide-loaded Carbon Nanohorn. Master Thesis. NTUST. 2016
33. Mandal S., et al., Hydroxyapatite Coated Iron Oxide Nanoparticles: A Promising Nanomaterial for Magnetic Hyperthermia Cancer Treatment. Nanomaterials 2017, 7, 426; doi:10.3390/nano7120426.
34. Kobayashi, T. (2011). Cancer hyperthermia using magnetic nanoparticles.
Biotechnology journal, 6(11), 1342-1347.
35. Siriviriyanun, A., Tsai, Y. J., Voon, S. H., Kiew, S. F., Imae, T., Kiew, L. V., ... & Chung, L. Y. (2018). Cyclodextrin-and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Materials Science and Engineering: C, 89, 307-315.
36. Hsu, Y. H., Hsieh, H. L., Viswanathan, G., Voon, S. H., Kue, C. S., Saw, W. S., ... & Lee, H. B. (2017). Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. Journal of Nanoparticle Research, 19(11), 359.
37. Thiesen, B., & Jordan, A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. International journal of hyperthermia, 24(6), 467-474.

無法下載圖示 全文公開日期 2025/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE