簡易檢索 / 詳目顯示

研究生: 黃鈺方
Yu-Fang Huang
論文名稱: 以三階段式合成Fe3O4/SiO2/Ag中空複合結構與其性質探討
Synthesis of Fe3O4/SiO2/Ag Hollow Composite Structure by Three-stage Synthesis and Properties explore
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 羅聖全
Shen-Chuan Lo
陳良益
Liang-Yih Chen
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 中空複合球氧化鐵穿透式電子顯微鏡電子損失能譜表面增強拉曼光譜
外文關鍵詞: Hollow compound sphere, Electron microscopy and energy spectrum analysis
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究嘗試開發一個簡單、快速且可大量生產的三階段製程製備四氧化三鐵中空球複合結構。所製備的中空複合結構以電子顯微鏡及電子能量損失能譜探討各階段所得樣品之表面型態、晶體結構並進行氧化鐵之相鑑定。實驗結果顯示第一階段的噴霧裂解法所製備的氧化鐵中空球尺寸介於0.5至3微米,平均殼層厚度約為20奈米。所製備之中空球以Ar/H2氣氛進行還原可成功得到具有良好鐵磁特性的F四氧化三鐵結構。第二階段的溶膠-凝膠法所披覆的二氧化矽薄層厚度約為10奈米。第三階段的初濕含浸法所成長的銀顆粒尺寸約為10至30奈米,均勻分布在中空球表面。但電子能量損失能譜分析指出,四氧化三鐵中空球在經過成長銀顆粒的製程後部份被氧化,導致飽和磁化量下降。
    最後探討此中空複合結構之表面增強拉曼光譜特性。與文獻中的實心球複合結構相比,以R6G為偵測物,在R6G濃度為10-8M時,此中空複合結構在1650cm-1處所得到的拉曼光譜強度較文獻中的高一個數量級以上。增強的原因推測與中空結構所提供的懸浮特性以及適當的銀顆粒尺寸及間距有關。


    This study attempts to develop a simple, rapid and mass-produced three-stage process for the preparation of Fe3O4 hollow sphere composite structures. The prepared hollow composite structure was characterized by electron microscopy and electron energy loss spectroscopy to study the surface morphology and crystal structure of the samples obtained in each stage and to identify the phases of iron oxide. The experimental results show that the iron oxide hollow spheres prepared by the first stage spray lysis method have a size of 0.5 μm to 3 μm and an average shell thickness of about 20 nm. The prepared hollow spheres were reduced in an Ar/H2 atmosphere to successfully obtain a Fe3O4 structure having good ferromagnetic properties. The thickness of the SiO2 layer coated by the second stage sol-gel method is about 10 nm. The Ag particles grown in the third stage of the incipient wetness method have a size of about 10 to 30 nm and are uniformly distributed on the surface of the hollow sphere. However, the electron energy loss spectrum analysis indicates that the Fe3O4 hollow sphere is partially oxidized after the process of growing Ag particles, resulting in a decrease in the saturation magnetization.
    Finally, the surface-enhanced Raman spectroscopy properties of the hollow composite structure are discussed. Compared with the solid sphere composite structure in the literature, with R6G as the detector, the Raman spectral intensity of the hollow composite structure at 1650 cm-1 is more than an order of magnitude higher than that in the literature when the concentration of R6G is 10-8M. The reason for the enhancement is presumed to be related to the suspension characteristics provided by the hollow structure and the appropriate Ag particle size and spacing.

    摘要 I ABSTRACT III 誌 謝 V 目 錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 第二章 文獻回顧與理論介紹 7 2.1 拉曼光譜 7 2.1.1 拉曼光譜理論簡介 7 2.1.2 表面增強拉曼光譜理論簡介 9 2.1.3 磁性/貴金屬複合材料在表面增強拉曼光譜(SERS) 效益與應用 12 2.2 材料性質與研究背景 17 2.2.1 鐵氧化物結構與物理性質 17 2.2.2 四氧化三鐵之表面修飾 19 2.2.3 四氧化三鐵之製備方法 21 第三章 實驗方法 23 3.1 實驗流程 23 3.1.1 中空三氧化二鐵之製備 24 3.1.2 中空四氧化三鐵之於不同氣氛下之還原 25 3.1.3 中空四氧化三鐵包覆二氧化矽之表面改質 25 3.1.4 奈米銀顆粒沉積 26 3.2 性質分析 26 3.2.1 X光繞射分析 26 3.2.2 掃描式電子顯微鏡 27 3.2.3 穿透式電子顯微鏡 28 3.2.4 球差校正穿透式電子顯微鏡 30 3.2.5 拉曼光譜分析 31 3.2.6 表面增強拉曼光譜樣品製備 32 3.2.7 振動樣品磁力量測 33 第四章 結果與討論 35 4.1 以噴霧裂解法進行氧化鐵中空球之合成及其微結構分析 35 4.1.1 XRD分析 35 4.1.2 SEM分析 37 4.1.3 TEM分析 38 4.1.4 EELS分析 40 4.2 以不同還原氣氛對FE2O3中空球進行還原處理之結果 42 4.2.1 Ar/H2混和氣氛 42 4.2.1.1 XRD分析 42 4.2.1.2 SEM分析 43 4.2.1.4 TEM分析 44 4.2.1.5 EELS分析 45 4.3.1 N2/H2混和氣氛 47 4.3.1.1 XRD分析 47 4.3.1.2 SEM分析 48 4.3.1.3 TEM分析 49 4.3.1.5 EELS分析 50 4.4.1 Fe3O4中空球之磁性分析 52 4.3 FE3O4中空球表面包覆SIO2之微結構分析 53 4.3.1 XRD分析 53 4.3.2 TEM分析 54 4.3.3 VSM磁性分析 56 4.4 FE3O4 -SIO2中空殼核表面成長奈米AG顆粒之微結構與性質分析 57 4.4.1 XRD分析 57 4.4.2 TEM分析 58 4.4.3 EELS分析 60 4.4.4 VSM磁性分析 62 4.4.5 表面增強拉曼光譜分析 63 第五章 結論 65 第六章 參考文獻 66

    [1] Wei Wu, Chang Zhong Jiang and Vellaisamy A. L. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale (8) 2016, 19421-19474.
    [2] Wei Wu, Zhaohui Wu, Taekyung Yu, Changzhong Jiang and Woo-Sik Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, (16) 023501.
    [3] Xin Gu, Michael J. Trujillo, Jacob E. Olson and Jon P. Camden, SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin, Annu. Rev. Anal. Chem. 2018, 11:13.1-13.23.
    [4] Ivano Alessandri and John R. Lombardi, Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, (116) 4921 – 14981.
    [5] Gustavo Bodelón, Verónica Montes-García, Jorge Pérez-Juste and Isabel Pastoriza-Santos, Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Frontiers in Cellular and Infection Microbiology 2018, Volume 8, Article 143.
    [6] Kwan KIM and Kuan Soo SHIN, Surface-Enhanced Raman Scattering: A Powerful Tool for Chemical Identification. ICAS 2011, 775-783.
    [7] Libor Machala, Ji rí Tu cek, and Radek Zbo ril, Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255 – 3272.
    [8] Mehmet Kahraman, Emma R. Mullen, Aysun Korkmaz and Sebastian Wachsmann-Hogiu, Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 2017, 6(5), 831–852.
    [9] Jeong-Yong Choi, Kwan Kim, Kuan Soo Shin, Surface-enhanced Raman scattering inducible by recyclable Ag-coated magnetic particles. Vibrational Spectroscopy 2010, (53) 117–120.
    [10] Xiao-Shan Zheng, Izabella Jolan Jahn, Karina Weber, Dana Cialla-May, Jürgen Popp, Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018.
    [11] Zhi Yong Bao, Jiyan Dai, Dang Yuan Lei, and Yucheng Wu, Maximizing surface-enhanced Raman scattering sensitivity of surfactant-free Ag-Fe3O4 nanocomposites through optimization of silver nanoparticle density and magnetic self-assembly. J. Appl. Phys. 2013, 114, 124305.
    [12] Bhavya Sharma, Renee R. Frontiera, Anne-Isabelle Henry, Emilie Ringe, and Richard P. Van Duyne, SERS: Materials, applications, and the future. Material Today 2012.
    [13] SUN Lijuan, HE Jiang, AN Songsong, ZHANG Junwei, ZHENG Jinmin, REN Dong, Recyclable Fe3O4@SiO2-Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chinese Journal of Catalysis 2013, 34, 1378–1385.
    [14] Baoliang Lv, Yao Xu, Hong Tian, Dong Wu, Yuan Sun, Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. Journal of Solid State Chemistry 2010, 183 2968–2973.
    [15] Xiong Wen (David) Lou, Lynden A. Archer and Zichao Yang, Hollow Micro-/Nanostructures: Synthesis and Applications. Adv. Mater. 2008, 20, 3987–4019.
    [16] Sara Fateixa, Helena I. S. Nogueira and Tito Trindade, Hybrid nanostructures for SERS: materials development and chemical detection. PCCP 2015.
    [17] Sebastian Schlucker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756 – 4795.
    [18] Gardiner, D.J. (1989). Practical Raman spectroscopy. Springer-Verlag. ISBN 978-0387502540.
    [19] Dan Song, Rong Yang, Chongwen Wang, Rui Xiao and Feng Long, Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Scientific Reports 2016.
    [20] Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1):p. 1-20.
    [21] Chunyu Niu, Bingfang Zou, Yongqiang Wang, Lin Cheng, Haihong Zheng and Shaomin Zhou, Highly Sensitive and Reproducible SERS Performance from Uniform Film Assembled by Magnetic Noble Metal Composite Microspheres. Langmuir 2016, 32, 858−863.
    [22] Anna Balzerova, Ariana Fargasova, Zdenka Markova, Vaclav Ranch, and Radek Zboril, Magnetically-Assisted Surface Enhanced Raman Spectroscopy (MA-SERS) for Label-Free Determination of Human Immunoglobulin G(IgG) in Blood Using Fe3O4@Ag Nanocomposite. Anal. Chem. 2014, 86, 11107 – 11114.
    [23] Mehmet Kahraman, Emma R. Mullen, Aysun Korkmaz and Sebastian Wachsmann-Hogiu, Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics 2017, 6(5), 831–852.
    [24] Yin Xu, Xuefeng Yan, Wenzhang Fang, Stéphane Daniele, Jinlong Zhang, Lingzhi Wang, SERS self-monitoring of Ag-catalyzed reaction by magnetically separable mesoporous Fe3O4@Ag@mSiO2. Microporous and Mesoporous Materials 2018, 263 113–119.
    [25] Yongqiang Wang, Ke Wang, Bingfang Zou, Tao Gao, Xiaoli Zhang, Zuliang Du and Shaomin Zhou, Magnetic-based silver composite microspheres with the nanosheet-assembled shell for effective SERS substrate. J. Mater. Chem. C, 2013, 1, 2441–2447.
    [26] Ruyi Shi, Xiangjiang Liu and Yibin Ying, Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. J. Agric. Food Chem. 2018, 66, 6525−6543.
    [27] Kwan KIM and Kuan Soo SHIN, Surface-Enhanced Raman Scattering: A Powerful Tool for Chemical Identification, ANALYTICAL SCIENCES AUGUST 2011, VOL. 27, 775-783.
    [28] Yongqiang Wang, Ke Wang, Bingfang Zou, Tao Gao, Xiaoli Zhang, Zuliang Du and Shaomin Zhou, Magnetic-based silver composite microspheres with the nanosheet-assembled shell for effective SERS substrate. J. Mater. Chem. C, 2013, 1, 2441–2447.
    [29] Jianhua Shen, Yihua Zhu, Xiaoling Yang, Jie Zong and Chunzhong Li, Multifunctional Fe3O4@Ag/SiO2/Au Core-shell Microspheres as a Novel SERS-Activity Label via Long-Range Plasmon Coupling, Langmuir 2012, 21, 1-24.
    [30] Doering, W.E. and S.Nie, Single-molecule and single-nanoparticles SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B, 2002, 106(2):311-317.
    [31] Felidj, N., et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003,82(18):p.3095-3097.
    [32] Albrecht. M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American chemical society, 1997.
    [33] Haibo Hu, Zhenghua Wang, Ling Pan, Shuping Zhao, and Shiyu Zhu, Ag-Coated Fe3O4@SiO2 Three-Ply Composite Microspheres: Synthesis, Characterization, and Application in Detecting Melamine with Their Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2010, 114, 7738–7742.
    [34] Jingjing Du and Chuanyong Jing, Preparation of Thiol-Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C 2011, 115, 17829 – 17835.
    [35] Hongyan Guo, Aiwu Zhao, Rujing Wang, Dapeng Wang, Liusan Wang, Qian Gao, Henghui Sun, Lei Li, Qinye He, Generalized green synthesis of Fe3O4/Ag composites with excellent SERS activity and their application in fungicide detection. J Nanopart Res 2015, 17:494.
    [36] Min Ye, Zewen Wei, Fei Hu, Jianxin Wang, Guanglu Ge, Zhiyuan Hu, Mingwang Shao, Shuit-Tong Lee and Jian Liu, Fast assembling microarrays of superparamagnetic Fe3O4 @Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering. Nanoscale 2015.
    [37] Baoliang Lv, Yao Xu, Hong Tian, Dong Wu, Yuan Sun, Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. Journal of Solid State Chemistry 2010, 183, 2968–2973.
    [38] Qian Gao, Aiwu Zhao, Hongyan Guo, Xucheng Chen, Zibao Gan, Wenyu Tao, Maofeng Zhang, Rong Wu and Zhenxin Li, Controlled synthesis of Au – Fe3O4 hybrid hollow spheres with excellent SERS activity and catalytic properties. Dalton Trans., 2014, 43, 7998–8006.
    [39] Wansong Yu, Yiqun Huang, Lu Pei, Yuxia Fan, Xiaohui Wang, and Keqiang Lai, Magnetic Fe3O4/Ag Hybrid Nanoparticles as Surface-Enhanced Raman Scattering Substrate for Trace Analysis of Furazolidone in Fish Feeds. Journal of Nanomaterials 2014.
    [40] Georgios A. Sotiriou, Ann M. Hirt, Pierre-Yves Lozach, Alexandra Teleki, Frank Krumeich and Sotiris E. Pratsinis, Hybrid, Silica-Coated, Janus-Like Plasmonic-Magnetic Nanoparticles. Chem. Mater. 2011, 23, 1985 – 1992.
    [41] Yue Chen, Yuanyuan Zhang, Qiangwei Kou, Yang Liu, Donglai Han, Dandan Wang, Yantao Sun, Yongjun Zhang, Yaxin Wang, Ziyang Lu, Lei Chen, Jinghai Yang and Scott Guozhong Xing, Enhanced Catalytic Reduction of 4-Nitrophenol Driven by Fe3O4-Au Magnetic Nanocomposite Interface Engineering: From Facile Preparation to Recyclable Application, Nanomaterials 2018, 8, 353.
    [42] Ali Bahadur, Aamer Saeed, Muhammad Shoaib, Shahid Iqbal, Muhammad Imran Bashir, Muhammad Waqas, Muhammad Nasir Hussain, Nasir Abbas, Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies. Materials Chemistry and Physics 2017, 198, 229-235.
    [43] Lei Yu, Ruixin Han, Xiahan Sang, Jue Liu, Melonie P. Thomas, Bethany M. Hudak, Amita Patel, and Beth S. Guiton, Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules. ACS Nano 2018, 12, 9051−9059.
    [44] I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Perez-Hernandez, J. Arenas-Alatorre, Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters 2007, (61) 4447 – 4451.
    [45] Libor Machala, Jiri Tucek, and Radek Zboril, Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials 2011, 23, 3255-3272.
    [46] Wei Wu, Chang Zhong Jiang and Vellaisamy A. L. Roy, Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, (8), 19421–19474.
    [47] Gareth S. Parkinson, Iron Oxide Surfaces. Institute of Applied Physics, TU Vienna, Austria 2016.
    [48] C.J. Serna and M.P. Morales, MAGHEMITE (γ-Fe2O3): A VERSATILE MAGNETIC COLLOIDAL MATERIAL. Surface and Colloid Science, Vol. 17, Chap. 2, pp. 27-81.
    [49] Xiaoyi Fu, Jingjing Liu, Xinhua He, A Facile Preparation method for single-hole hollow Fe3O4@SiO2 microspheres. Physicochem. Eng.Aspects 2014, 453, 101–108.
    [50] Zhigang Liu, Gang Wang, Jiaqi Zhuang and Wensheng Yang, Effects of the concentration of tetramethylammonium hydroxide peptizer on the synthesis of Fe3O4/SiO2 core/shell nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects 2006, 278, pp. 140-143.

    [51] Jingjing Zhang, Yu Yao, Tao Huang, Aishi Yu, Uniform hollow Fe3O4 spheres prepared by the template-free solvothermal method as anode material for lithium-ion batteries. Electrochimica Acta 2012, 78, 502– 507.
    [52] Ratna Balgis, Lusi Ernawati, Takashi Ogi, and Kikuo Okuyama, Controlled Surface Topography of Nanostructured Particles Prepared by Spray-Drying Process. AIChE Journal of 2017.
    [53] Hira Fatima, Dae-Won Lee, Hyun Joong Yun and Kyo-Seon Kim, Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Adv., 2018, 8, 22917.
    [54] Kishwar Khan, Sarish Rehman, Hafeez Ur Rahman, Qasim Khan, Synthesis and application of magnetic nanoparticles. Nanomagnetism, 135-159.
    [55] Wei Wu, Zhaohui Wu, Taekyung Yu, Changzhong Jiang and Woo-Sik Kim, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, (16) 023501.
    [56] Nikesh Gupta, Parul Pant, Chetna Gupta, Puneet Goel, Astha Jain, Sakshi Anand and Pundir., Engineered magnetic nanoparticles as efficient sorbents for wastewater treatment: A review, Materials Research Innovations 2017, 435-450.
    [57] Le Thi Mai Hoa, Tran Thi Dung, Tran Mau Dahn, Nguyen Huu Duc and Dang Mau Chien., Preparation and characterization of magnetic nanoparticles coated with polyethene glycol, J. Phys.: Conference Series 2009, 187 1−4.
    [58] Lihua Huo, Qiang Li, Hui Zhao, Lijum Yu, Shan Gao, Jinggui Zhao., Sol-gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization, Sens. and Actuators B 107 2005, 915−920.
    [59] Morteza Eslamian and Marzieh Shekarriz, Recent Advances in Nanoparticle Preparation by Spray and Micro-emulsion Methods. Recent Patents on Nanotechnology 2009, 3, 99-115.
    [60] Benxia Li, Xiankun Shao, Yonggan Hao and Yan Zhao, Ultrasonic-Spray-Assisted Synthesis of Metal Oxide Hollow/Mesoporous Microspheres for Catalytic CO Oxidation. J. Name., 2015, 00, 1-3.
    [61] P.G. Hernándaez-Salcedo, P. Amezaga-Madrid, B.E. Monarrez-Cordero, W. Antunez-Flores, P. Piza-Ruiz, C. Leyva-Porras, C. Ornelas-Gutierrez, M. Miki-Yoshida, Theoretical and experimental influence of aerosol assisted CVD parameters on the microstructural properties of magnetite nanoparticles and their response on the removal efficiency of arsenic. 2015, 287-296.
    [62] 鄭信民; 林麗娟; 工研院材料所微結構分析實驗室*副研究員, 主研究員; X光繞射應用簡介. 工業材料雜誌, 材料分析專題 2002, (181), 100-108.
    [63] Trevor P. Almeida, Takeshi Kasama, Adrian R. Muxworthy, Wyn Williams, Lesleis Nagy, Thomas W. Hansen, Paul D. Brown and Rafal E. Dunin-Borkowski, Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles. NATURE COMMUNICATIONS 2014, 5, 5154.
    [64] Chongwen Wang, Junfeng Wang, Zhen Rong, Ping Li, Xiaofei Jia, Qiuling Ma, Rui Xiao and Shengqi Wang., Sonochemical synthesis of highly-branched flower-like Fe3O4/SiO2/Ag microcomposites and their application as versatile SERS substrates. Electronic Supplementary Material for Nanoscale 2016, 8 (47).

    無法下載圖示 全文公開日期 2024/02/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2029/02/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE