簡易檢索 / 詳目顯示

研究生: 顏庭嘉
Ting-Chia Yen
論文名稱: 再生瀝青混凝土抗開裂性質與績效平衡分析
Cracking Resistance and Balanced Performance Analysis for Recycled Asphalt Mixtures
指導教授: 廖敏志
Min-Chih Liao
口試委員: 陳建旭
Jian-Shiuh Chen
林彥宇
Yen-Yu Lin
蘇育民
Yu-Min Su
盧之偉
Chih-Wei Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 148
中文關鍵詞: 再生瀝青混凝土IDEAL-CT試驗水侵害試驗績效平衡設計
外文關鍵詞: Recycled Asphalt Concrete, Indirect Tensile Asphalt Cracking Test, Moisture Damage, Balanced Mix Design
相關次數: 點閱:425下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球因地球暖化日益嚴重,回收廢物循環再利用之環保永續概念為一個重大的議題,而依據交通部數據顯示,國內鋪面材料大多採用瀝青混凝土(Asphalt Concrete, AC)(柔性鋪面),而其損壞後經刨除會產生大量之瀝青混凝土刨除料(Reclaimed Asphalt Pavement, RAP),所以國內致力於運用道路刨除之RAP於再生瀝青混凝土(Recycled Asphalt Concrete, RAC)中,使廢棄物得以運用且降低新鮮材料需求量,但為了確保鋪面之品質,使用RAP之配比設計較新鮮瀝青複雜且限制RAP添加比例,導致許多RAP料堆置於瀝青廠且已過度老化,故本研究為了使運用上更為彈性,使用不同老化程度之RAP和不同之RAP添加含量分別為0%、20%、30%與40%進行試驗,且鋪面添加RAP後,常還未到預計使用年限即損壞,危害行車和人之安全,本研究考慮國內氣候與RAP材料之影響,使用間接張力強度試驗(IDT)、漢堡車轍輪跡試驗(HWTT)、間接張力開裂試驗(IDEAL-CT)、四點彎曲試驗(4PBT) 及水侵害試驗(Moisture Damage)等鋪面績效試驗,深入了解並互相探討比較,進而對國內鋪面疲勞及開裂之行為相關研究有所助益,最後導入績效平衡配比設計(BMD)之概念,使鋪面能擁有抗開裂、抗車轍及抵抗水侵害之平衡性能。根據試驗結果顯示,當使用針入度較小之瀝青膠泥和RAP、使用較大標稱最大粒徑之粒料、添加較多之RAP含量或加劇老化程度時,CT_Index值下降,與四點彎曲試驗之結果值ε_6有相同之趨勢,但間接張力值、穩定值、車轍有相反之趨勢;比較CT_Index參數間關係,得出m_75較能直觀看出與CT_Index值關係;繪製三軸績效圖,雖本研究數據皆無法在平衡規範建議值之範圍內,但可以得出使用19 mm標稱最大粒徑及基底瀝青AC10,並添加30%和40%之RAP2時,較能有接近規範建議值,兼具有抗開裂、抗車轍和抵抗水侵害三者之平衡特性,然而,也發現本研究材料較難符合TSR規範值,故推測單純新鮮瀝青無法同時滿足抗開裂、抗車轍和抵抗水侵害三者之平衡特性,故需使用額外添加劑或等級較高之瀝青膠泥。


    In recent years, global warming is increasingly influencing the climate, and the concept of environmental protection and sustainability of recycling waste have become a major issue. According to the database obtained from the Ministry of Transportation and Communications, the majority of pavements in Taiwan is constructed with asphalt concrete (AC) (flexible pavement). The milling operation are performed when the pavement deteriotations occur so that huge amounts of reclaimed asphalt pavement (RAP) are generated and piled in the asphalt plants. Incoporating RAP in recycled asphalt concrete (RAC) has been a solution to address this environmental issue. However, due to the complexited of RAC together with the variance in RAP properties, the quality of pavement is always a primary concern within the service life. The objective of this study was to evaluate the effect of RAP content on performance characteristics including rutting and cracking. Indirect Tensile Strength Test (IDT), Hamburg Wheel Tracking Test (HWTT), InDirect TEnsile AsphaLt Cracking Test (IDEAL-CT), Four Point Bending Test (4PBT), Moisture Damage were conducted on the recycled asphalt mixtures. In addition to laboratory testing, Balanced Mix Design (BMD) approach was utilized to interprete the engineering properties associated with balanced performance for the mixtures. The test results show that a decrease in CT_Index was exhibited for the recycled asphalt mixtures with higher RAP content and larger nominal maximum aggregate size (NMAS). The long-term aging process for the mixtures also results in lower value. It is found that CT_Index value is very sensitive to the m value of slope which is at the post-peak load stage. In terms of the balanced performance among rutting, cracking and moisture damage, it is concluded that no asphalt mixture can meet these three performance requirements in this study. The NMAS 19 mm asphalt mixtures (AC-10 base asphalt) with 30% and 40% of RAP2 perhaps can achieve the balanced performance. It is also found that the TSR is a rigrous indicator for evaluating the water sensitivity for the asphalt materials. The use of additives or modified asphalt should be are required in order to ahieve the balanced performance for the recycled asphalt mixtures.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 X 圖目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 間接張力開裂試驗 4 2.2 水侵害 12 2.3 績效平衡配比設計 15 第三章 研究計畫 21 3.1 試驗範圍 21 3.2 研究流程 21 3.3 試驗材料 23 3.3.1 瀝青膠泥 23 3.3.2 瀝青混凝土刨除料(RAP) 24 3.3.3 天然粒料 24 3.3.4 填充料 24 3.3.5 試驗編號 25 3.4 瀝青膠泥之試驗方法 27 3.4.1 瀝青比重試驗 27 3.4.2 針入度試驗 29 3.4.3 軟化點試驗-環球法 31 3.4.4 黏滯度試驗 32 3.4.5 萃取試驗 34 3.5 粒料之試驗方法 35 3.5.1 含油量試驗 35 3.5.2 粗粒料扁平、細長或扁長顆粒含量試驗 37 3.5.3 粗粒料洛杉磯磨損試驗 39 3.5.4 粗粒料破碎顆粒含量試驗 41 3.5.5 含砂當量 43 3.5.6 健度試驗 45 3.5.7 篩分析試驗 47 3.5.8 粗粒料比重和吸水率試驗 49 3.5.9 細粒料比重和吸水率試驗 51 3.6 填充料之試驗方法 53 3.6.1 石粉比重試驗 53 3.6.2 液性限度試驗 54 3.6.3 塑性限度試驗 55 3.7 瀝青混合料試驗方法 56 3.7.1 配比設計 56 3.7.2 馬歇爾滯留強度試驗 61 3.7.3 最大理論比重試驗 62 3.7.4 間接張力強度試驗 63 3.7.5 間接張力開裂試驗 65 3.7.6 老化養治 67 3.7.7 抗張強度試驗 68 第四章 結果與分析 69 4.1材料基本性質 69 4.1.1 瀝青 69 4.1.2 RAP 70 4.1.3 天然粒料 72 4.1.4 填充料 73 4.2 配比設計 74 4.2.1 馬歇爾密級配設計(控制組) 74 4.2.2 馬歇爾密級配設計(對照組) 76 4.3 RAP使用量對瀝青混凝土績效試驗之影響 80 4.3.1 馬歇爾穩定值 80 4.3.2 間接張力強度 81 4.3.3 抗開裂指數 82 4.3.4水侵害試驗-間接張力強度 83 4.3.5 水侵害試驗-抗開裂指數 84 4.3.6 四點彎曲試驗 85 4.3.7 漢堡車轍輪跡試驗 86 4.4 老化程度對瀝青混凝土績效試驗之影響 88 4.4.1 間接張力強度 88 4.4.2 抗開裂指數 90 4.5 績效試驗之綜合比較 92 4.5.1 抗開裂指數與穩定值比較 92 4.5.2 抗開裂指數與間接張力強度比較 94 4.5.3 間接張力強度與穩定值比較 95 4.5.4 水侵害浸水前後間接張力強度比較 96 4.5.5 水侵害浸水前後抗開裂指數之比較 99 4.5.6 抗開裂指數與四點彎曲試驗比較 103 4.5.7 抗開裂指數與漢堡車轍輪跡試驗比較 104 4.6 再生瀝青混凝土之疲勞參數間之關係 105 4.7 瀝青混凝土績效平衡式配比設計 110 4.7.1 績效平衡式配比設計 110 4.7.2 圖形製作 111 4.7.2 三軸績效圖 111 第五章 結論與建議 115 5.1 結論 115 5.2 建議 117 參考文獻 118 附錄1馬歇爾密級配設計詳細資料 122

    石濟維(2021)。基於老化瀝青有效反應量之再生瀝青混凝土績效平衡設計。國立臺灣科技大學營建工程系,。
    交通部公路總局,(2019),瀝青混凝土之一般要求,交通部。
    吳學禮,(2001),鋪面、材料工程實務。
    陳建旭、劉韋廷、廖敏志、王慶雄、蔡益智、林和志,(2011年10月),分析鋪面坑洞產生原因與建議維護方法,臺灣公路工程,,頁2-47。
    蔡攀鰲,(2009),瀝青混凝土。
    Bennert, T., Haas, E., & Wass, E. (2018). Indirect tensile test (IDT) to determine asphalt mixture performance indicators during quality control testing in New Jersey. Transportation research record, 2672(28), pp. 394-403.
    Caro, S., Masad, E., Bhasin, A., & Little, D. N. (2008). Moisture susceptibility of asphalt mixtures, Part 1: mechanisms. International Journal of Pavement Engineering, pp. 81-98.
    Chen, H., Zhang, Y., & Bahia, H. U. (2021). The role of binders in mixture cracking resistance measured by ideal-CT test. International Journal of Fatigue, 142, 105947.
    Cheng, D., Little, D. N., Lytton, R. L., & Holste, J. C. (2002). Surface energy measurement of asphalt and its application to predicting fatigue and healing in asphalt mixtures. Transportation Research Record, 1810(1), pp. 44-53.
    Cheng, D., Little, D. N., Lytton, R. L., & Holste, J. C. (2003). Moisture damage evaluation of asphalt mixtures by considering both moisture diffusion and repeated-load conditions. Transportation research record, 1832(1), pp. 42-49.
    Cho, D. W., & Kim, K. (2010). The mechanisms of moisture damage in asphalt pavement by applying chemistry aspects. KSCE Journal of Civil Engineering, 14(3), pp. 333-341.
    Chowdhury, P. S., Noojilla, S. L. A., & Reddy, M. A. (2022). Evaluation of fatigue characteristics of asphalt mixtures using Cracking Tolerance index (CTIndex). Construction and Building Materials, 342, 128030.
    Cui, S., Blackman, B. R., Kinloch, A. J., & Taylor, A. C. (2014). Durability of asphalt mixtures: Effect of aggregate type and adhesion promoters. International Journal of Adhesion and Adhesives, 54, pp. 100-111.
    Habbouche, J., Boz, I., Diefenderfer, B. K., & Kim, S. (2022). Multi-Level Laboratory Performance Evaluation of Conventional and High Polymer-Modified Asphalt Mixtures. Transportation Research Record, 2676(5), pp. 297-314.
    Imad L. Al-Qadi, Hasan Ozer, John Lambros,Ahmad El Khatib, Punit Singhvi, Tamim Khan,José Rivera-Perez, and Berangere Doll. (2015). Testing Protocols to Ensure Performance of High Asphalt Binder Replacement Mixes Using RAP and RAS. Illinois Center for Transportation/Illinois Department of Transportation.
    Asphalt Institute. (2014). MS-2 Asphalt Mix Design Methods.
    Khosla, N., Birdsall, B. G., & Kawaguchi, S. (2000). Evaluation of moisture susceptibility of asphalt mixtures: conventional and new methods. Transportation Research Record, 1728(1), pp. 43-51.
    Little, D. N., Allen, D. H., & Bhasin, A. (2018). Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements. In Modeling and design of flexible pavements and materials, pp. 123-186.
    Newcomb, D., & Zhou, F. (2018). Balanced design of asphalt mixtures(No. MN/RC 2018-22). Minnesota. Dept. of Transportation, Research Services & Library.
    Pasandín, A. R., & Pérez, I. (2015). The influence of the mineral filler on the adhesion between aggregates and bitumen. International Journal of Adhesion and Adhesives, 58, pp. 53-58.
    Sengoz, B., & Agar, E. (2007). Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Building and environment, 42(10), pp. 3621-3628.
    Shu, X., Huang, B., Shrum, E. D., & Jia, X. (2012). Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction and Building Materials, 35, pp. 125-130.
    Veeraragavan, R. K., Nener-Plante, D., Myers, L., Nash, C., & Tran, N. H. (2022). Balanced mix design benchmarking of field-produced asphalt mixtures in Maine, US. Transportation Research Record, 2676(5), pp. 263-276.
    Vivanco Sala, D., Tran, N., Yin, F., & Bowers, B. F. (2022). Evaluating Impact of Corrected Optimum Asphalt Content and Benchmarking Cracking Resistance of Georgia Mixtures for Balanced Mix Design Implementation. Transportation Research Record, 2676(5), pp. 13-29.
    West, R., Rodezno, C., Leiva, F., & Yin, F. (2018). Development of a framework for balanced mix design. Project NCHRP, 20-07.
    Xu, S., Peng, G., Zhang, Y., Guo, Y., Suo, Z., & Xu, Y. (2021). Design Method of Asphalt Pavement Mixture Based on Performance Balance Approach. Journal of Transportation Engineering, Part B: Pavements, 147(2), 04021009.
    Yan, C., Zhang, Y., & Bahia, H. U. (2020). Comparison between SCB-IFIT, un-notched SCB-IFIT and IDEAL-CT for measuring cracking resistance of asphalt mixtures. Construction and Building Materials, 252, 119060.
    Yin, F., & West, R. C. (2021). Balanced mix design resource guide. National Asphalt Pavement (No. IS-143).
    Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(sup4), 18(sup4), pp. 405-427.
    Zhou, F., Newcomb, D., Gurganus, C., Banihashemrad, S., Park, E. S., Sakhaeifar, M., & Lytton, R. L. (2016). Experimental design for field validation of laboratory tests to assess cracking resistance of asphalt mixtures. NCHRP Project, 9.
    Zhou, F., Scullion, T., Walubita, L. & Wilson, B.(2014). Implementation of a performance-based mix design system in Texas. Application of Asphalt Mix Performance-Based Specifications, 32, pp. 32-50.

    QR CODE