簡易檢索 / 詳目顯示

研究生: 邱靖雯
Ching-Wen - Chiu
論文名稱: 利用微\奈米尺度複合結構提升矽基板漫反射率
Enhanced light diffuse reflectance of silicon substrate using a micro/nano-scale hybrid structure
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 柯文政
Wen-Cheng Ke
余承曄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 矽奈孔洞金字塔局部表面電漿共振太陽能電池
外文關鍵詞: micro/nano- scale composite structure, Metal assisted electroless chemical etching, Localized surface plasmon resonance, Indium nanoparticle
相關次數: 點閱:228下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇論文分為兩個主要部分,其一為探討微/奈米尺度複合結構對六吋矽基太陽能電池之影響。製程上以金字塔為主要結構,並在金字塔結構鍍上一層銀膜,利用不被覆現象(Dewetting),因薄膜表面張力與基材間熱膨脹係數不同,可藉由改變銀膜厚度退火出不同直徑大小之孔洞遮罩,並利用濕式蝕刻法蝕刻具有良好抗反射特性之奈米孔洞結構,其優點為可大面積製作且製程簡單、成本低,便能有效粗化基板,降低太陽能電池反射以提高光捕捉能力,於反射率部分,在孔洞直徑100 nm深度為100 nm時全波段(250-1100 nm)漫反射可降至3.3 %,全射率可降至3.9 % ,而少數載子生命週期可維持在2 μs。
其二是研究銦奈米粒表面侷域性表面電漿共振效應(Localized Surface Plasmon Resonance) ,當光波與金屬性物質交互作用時,主要是來自於光波隨時間與空間作週期性變化的電場與磁場,對於金屬性物質中的電荷分布產生影響,導致電荷密度在空間中造成變化以及能階躍遷與極化等效應,這些效應所產生之電磁場與外來光波之電磁場耦合在一起時,以散射、吸收或電磁波產生出各種不同光電現象,此效應可提升紫外光波段吸收,在孔洞直徑200 nm深度為100 nm時,蒸鍍2.5 min銦退火後,紫外光波段(250-400 nm)漫反射可降至1.9 %,全射率可下降至2.2 %,並藉由此效應所產生之侷域性表面電場可提升表面少數載子生命週期,以提升整體太陽能電池轉換效率。


There are two parts in the study. One study is about the micro/nano- scale composite structure effected to 6-inch silicon wafer. We used silicon pyramid structure then we sputtering silver film. For the Dewetting phenomenon, it can change the silver morphology to ball-like shape. Due to the tension of silver film and the coefficient of heat expansion difference between substructure and film. By changing annealing temperature, we get different size mask of ball-like silver. Metal assisted electroless chemical etching (MAEE) was used to fabricate hole structures which had advantage for anti-reflection. The benefit of this method is that it can fabricate large area, simple to product, low cost. It is an effective way to reduce reflection and increasing the ability of capturing photons. For the diameter of 100 nm and 100 nm depth hole, the diffuse reflection rate of whole wavelength(250-1100nm) decreasing to 3.3 % however, the carrier lifetime not obviously decreased.
The second part of study is about the Indium nanoparticle characteristic of LSPR (Localized Surface Plasmon Resonance). When light interacting to metal, the electric field and magnetic field were periodically changed with time and space. It influence the distribution of electron in metal. The effect cause to the changed of charge density, energy level transition and polarization. The electric field was produces by these effects interact coupling to the electric field induce non by itself showed different optical and electronic phenomenon as scattering, absorption, refraction and dispersion. In this study it help to absorption of ultraviolent wavelength. When the hole diameter of 200 nm and 100 nm depth, deposition 2.5 min indium film then undergo thermal annealing, the diffuse reflection rate decreacing to 1.9 % and total reflection rate decreasing to 2.2% in ultraviolent wavelength(250-400 nm). Theses phenomenon improve the external quantum efficiency and improve the minority carriers lifetime by localized surface electric field. Moreover it can increasing the solar cell device power conversion efficiency.

目 錄 中文摘要 ................................................................... Ⅰ 英文摘要.................................................................... Ⅰ 誌謝........................................................................II 目錄........................................................................IV 圖目錄...................................................................... V 表目錄...................................................................... VI 第一章 緒論.................................................................1 1.1 前言....................................................................1 1.2 研究動機與目的...........................................................7 第二章 文獻探討.............................................................8 2.1 太陽光譜................................................................8 2.2 太陽能電池..............................................................11 2.3 矽奈米結構簡介...........................................................15 2.2.1 金字塔結構.............................................................15 2.2.2 矽奈米孔洞結構.........................................................18 2.4 金屬奈米球表面電漿共振....................................................20 2.4.1 表面電漿共振原理......................................................21 2.4.2 侷域性表面電漿子共振原理...............................................23 2.4.3 金屬顆粒表面形貌之特性.................................................23 2.4.4 金屬粒子大小分佈之表面電漿子響應........................................26 2.4.5 金屬粒子大小分佈之增強散射.............................................29 第三章 實驗方法.............................................................31 3.1 實驗流程................................................................31 3.2 微奈米金字塔孔洞複合結構製作太陽能電池製作..................................32 3.2.1 金字塔結構製備.........................................................33 3.2.2 以銀膜退火作為孔洞遮罩製備............................................34 3.2.3 太陽能電池製作.......................................................35 3.3 銦金屬奈米球於金字塔孔洞結構表面之特性探討..................................36 3.4 實驗分析儀器.............................................................37 第四章 矽奈米複合結構太陽能電池量測與分析......................................39 4.1 矽金字塔奈米孔洞結構分析..................................................40 4.1.1 蝕刻遮罩分析.........................................................40 4.1.2 孔洞分析.............................................................44 4.1.3 太陽能電池量測分析....................................................59 4.2 金屬奈米粒子光學特性量測與分析.............................................62 4.2.1 銦球製作於金字塔結構分析................................................66 第五章 結論與未來展望........................................................82 5.1 結論....................................................................82 5.2 未來展望................................................................82 參考文獻....................................................................83

參考資料
[1] 顧鴻壽,太陽能電池元件導論:材料、元件、製程、系統,全威圖書有限公司,中華民國98年10月
[2] 郭浩中,太陽能光電技術:五南圖書出版公司,中華民國101年10月
[3] 各類太陽能電池材料發展趨勢與比較
http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?Cnlid=13&id=0000397668_78V79QDF5UIREM98JK6U7&ct=1#ixzz4Pm52NxMB
[4] http://www.iiasa.ac.at/web/home/resources/mediacenter/FeatureArticles/Sustainable.en.html
[5] Hong Xiao,半導體製程技術導論,台灣培生教育出版有限公司,中華民國96年2月.
[6] An MIT Energy Initiative Workshop Report, “MIT-CSIS energy-water-land nexus
workshop,” MIT Energy Initiative Report on MIT-CSIS Energy-Water-Land NexusWorkshop, 2013.
[7] http://savearth.nctu.edu.tw/index.php/green-industry/111-article10.html
[8] E. Anno and M. Tanimoto, Size-dependent change in interband absorption and
Phys, PHYSICAL REVIEW B, 98 (2005) 053510-1– 053510-7.
[9] Martin A. Green and Keith, Emery, Solar cell efficiency tables, Progress in photovoltaics: research and application, 23 (2015) 805–812.
[10] M. A. Green, “Third Generation Photovoltaics: Advanced Solar Electricity
Generation”, Springer- Verlag, 1-3, (2003).
[11] Matthew C. Beard and Joseph M. Luther, The promise and challenge of nanostructured solar cells, Nature Nanotechnology, 9 (2014) 951–954
[12] Jenny Nelson 著,高揚 譯, The Physics of solar cell, 上海交通大學出版社, 2011
[13] Hsing-Ying Lin, et al. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs, Optics Express, 18 (2009) 165-172.
[14] Minkyu Ju,ab Nagarajan Balaji, The effect of small pyramid texturing on the enhanced passivation and efficiency of single c-Si solar cells, RSC Advances, 6 (2016) 49831-49838.
[15] X X Lin and X Hua1, Realization of high performance silicon nanowire based solar cells with large size, Nanotechnology, 24 (2013) 235402.
[16] X X Lin and Y Zeng, Realization of improved efficiency on nanostructured multicrystalline silicon solar cells for mass production, Nanotechnology, 26 (2015) 125401.
Zengguang Huang
1,2
, Sihua Zhong
[17] Zengguang Huang and Sihua Zhong, An effective way to simultaneous realization of excellent optical and electrical performance in large-scale Si nano/microstructures, Progress in Photovoltaics: Research and Applications, 23 (2015) 964–972.
[18] Xiaoya Ye and Shuai Zou, 18.45%-Efficient Multi-Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo-Pyramid Texture, Advanced Functional Materials Volume, 24 (2014) 6708–6716.
[19] 黃惠良, 太陽電池Solar Cells, 五南圖書出版股份有限公司,2008.
[20] C. Riordan and R. Hulstrom, What is an air mass 1.5 spectrum ?, Record of the IEEE Photovoltaic Specialists Conference, 2 (1990) 1085-1088.
[21] Natalya V. Yastrebova, High-efficiency multi-junction solar cells: Current status and future potential, Centre for Research in Photonics, 2007.
[22] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2006.
[23] Jianhua Zhao, 24% Efficient perl silicon solar cell:Recent improvements in high efficiency silicon cell research, Solar Energy Materials and Solar Cells, 41 (1996) 87-99.
[24] F. Llopis and I. Tobı´as, Influence of Texture Feature Size on the Optical Performance of Silicon Solar Cells, Progress in photovoltaics: research and applications, 13 (2005) 27-26.
[25] Mohammad Jellur Rahman, Lecture Notes on Structure of Matter, Department of Physics BUET, Dhaka-1000.
[26] Bean,K.E., Anisotropic etching of silicon, IEEE Trans. Electron Devices, 25 (1978) 1185.
[27] H.Seidel and L.Cspregi, Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, J.Electrochem, 137 (1990) 3612-3626.
[28] W.K. Choi., Characterisation of pyramid formation arising from the TMAH etching of silicon, Sensors and Actuator, 71 (1998) 238-243.
[29] Waheed A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dot, Journal of Advanced Research, 6 (2013) 2090-1232.
[30] E. Galeazzo and H.E.M. Peres, Gas sensitive porous silicon devices responses to organic vapors, Sensors and Actuators B, 93 (2003) 384–390.
[31] Stephanie Pace and Roshan B Vasani, Photonic porous silicon as a pH sensor, Pace et al. Nanoscale Research Letters, 9 (2014) 420.
[32] A. G. NASSIOPOULOU, Porous Silicon for Sensor Applications, 2005.
[33] Serdar Ozdemir and James L. Gole, The potential of porous silicon gas sensors, Solid State and Materials Science, 11 (2007) 92–100.
[34] Farid A.Harraz, Porous silicon chemical sensors and biosensors A review, Sensors and Actuators B, 202 (2014) 897–912.
[35] Jeong Kim, Formation of a Porous Silicon Anti -Reflection Layer for a Silicon Solar Cell, Journal of the Korean Physical Society, 50 (2007) 1168-1171.
[36] Jihun Oh and Hao-Chih Yuan, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, Nature Technology, 7 (2012) 743–748.
[37] Rajib Chakraborty and Reshmi Das, Metal-Assisted Porous silicon formation using solution deposition of nanoscale silver films, Journal of Optics, 43 (2014) 350.
[38] Kyumin Hana and M. Thamilselvana, Novel texturing of tri-crystalline silicon surfaces, Nanotechnology, 93 (2009) 1042–1046.
[39] Kuiqing Peng and Ying Xu, Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications, Small, 11(2005) 1062–1067.
[40] Kazuya Yamamura and TakuroMitani, Etching characteristics of local wet etching of silicon in HF / HNO3 mixtures, Surface and Interface Analysis, 40 (2008) 1011–1013.
[41] Carl V. Thompson, Solid-State Dewetting of Thin Films, Annu. Rev. Mater. Res., 42 (2012) 399–434.
[42] Wei-Chih Liu, High sensitivity of surface plasmon of weakly-distorted metallic surfaces, Opt. Express, 16 (2005) 9766–9773.
[43] 邱國斌、蔡定平,「金屬表面電漿簡介」,物理雙月刊,廿八卷,二期,2006.
[44] E. Anno and M. Tanimoto, Size-dependent change in interband absorption and
broadening of optical plasma-resonance absorption of indium particles, J. Appl.
Phys., 98 (2005) 053510-1– 053510-7.
[45] Y. Premkumar Singh and Amit Jain, Avinashi Kapoor, Localized surface
plasmons enhanced light transmission into c-silicon solar cells, J. Sol. Energy, 6 (2013) 1–6.
[46] Zi Ouyang, Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons, Appl. Phys. Lett., 96 (2010) 261109-1–261109-3.
[47] Hyun-Joon Kim and Dae-Eun Kim, Frictional behavior of Ag nanodot-pattern fabricated by thermal dewetting, Surface & Coatings Technology, 215 (2013) 234–240.
[48] Zhipeng Huang and Nadine Geyer, Metal-Assisted Chemical Etching of Silicon: A Review, Adv. Mater., 23 (2011) 285–308.

QR CODE